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Abstract: Zoonoses are diseases transmitted from animals to humans, posing a great threat to
the health and life of people all over the world. According to WHO estimations, 600 million
cases of diseases caused by contaminated food were noted in 2010, including almost 350 million
caused by pathogenic bacteria. Campylobacter, Salmonella, as well as Yersinia enterocolitica and
Listeria monocytogenes may dwell in livestock (poultry, cattle, and swine) but are also found in
wild animals, pets, fish, and rodents. Animals, often being asymptomatic carriers of pathogens,
excrete them with faeces, thus delivering them to the environment. Therefore, pathogens may invade
new individuals, as well as reside on vegetables and fruits. Pathogenic bacteria also penetrate food
production areas and may remain there in the form of a biofilm covering the surfaces of machines
and equipment. A common occurrence of microbes in food products, as well as their improper or
careless processing, leads to common poisonings. Symptoms of foodborne infections may be mild,
sometimes flu-like, but they also may be accompanied by severe complications, some even fatal.
The aim of the paper is to summarize and provide information on campylobacteriosis, salmonellosis,
yersiniosis, and listeriosis and the aetiological factors of those diseases, along with the general
characteristics of pathogens, virulence factors, and reservoirs.
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1. Introduction

Zoonoses, or diseases of animal origin, are defined as diseases transmitted between animals and
humans as a consequence of a direct contact, indirect environmental contact, or through food [1].
Among recognised pathogens causing human diseases, almost 60% are of animal origin. They cause
such diseases as toxoplasmosis, anthrax, rabies, Ebola haemorrhagic fever, severe acute respiratory
syndrome (SARS), and primary HIV infection [2,3].

Already in 1906, doctor Silvio J. Bonansea described in his paper titled “Veterinary Hygiene
Applied to the Protection of Man against Zoonoses” how animal health and hygiene are important
for the production of safe and healthy meat and milk [4]. Almost 50 years later, in November 1950
in Geneva, during the first meeting of the Expert Group on Zoonoses formed by the World Health
Organisation (WHO) and the United Nations Food and Agriculture Organisation (FAO), a list of
86 diseases transmitted from animals to humans was identified. Twenty of those diseases were caused
by bacteria [5]. Nowadays, it is estimated that among 1400 pathogens causing human diseases, 800 are
of animal origin [6].

There are numerous mechanisms of the transmission of zoonoses, and some diseases are
transmitted in various ways, which significantly hinders the diagnostic process (Figure 1) [7].
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Figure 1. Routes of diseases transmission from animals to humans [7,8].

Symptoms of food poisoning may be variable, ranging from mild and transient, including nausea,
vomiting, and malaise, to life-threatening kidney and liver failure, paralysis, and the dysfunction of
the nervous system and brain. Cases caused by consumption of unsafe and contaminated food may
also account for some instances of early death. Their global count may reach 4 million a year [9,10].

According to the WHO report published in 2015, almost 600 million cases of diseases caused by
contaminated food were noted in 2010, including almost 350 million caused by pathogenic bacteria [10].
Bacterial diseases of animal origin, e.g., caused by Campylobacter sp., Salmonella sp., Listeria sp.,
or the Enterobacteriaceae family, constitute a serious health risk both in developing countries and
in advanced ones as well, such as EU countries and the United States. It is estimated that in the US,
the number of food poisonings may reach as high as 48 million cases a year, with salmonellosis and
campylobacteriosis alone affecting as many as 2 million people a year [11,12]. In the EU, there are over
200,000 cases of bacterial zoonoses noted annually with presumably much higher numbers of real cases.
According to the 2017 report of the European Food Safety Authority (EFSA) and the European Centre
for Disease Prevention and Control (ECDC), the most common causes of food-borne zoonotic diseases
were Campylobacter and Salmonella bacteria (Figure 2) [13]. In Canada, the annual incidence of food
poisonings ranges between 3.1 and 5.0 million. In Australia, the incidence is 5.4 million [11,12].

Besides the health aspect, food poisonings also affect the economy due to the costs of
hospitalisation, work absence, financial losses associated with consumers’ concerns of food quality,
and the costs of legal proceedings [14]. The U.S. Department of Agriculture (USDA) estimated that the
country spends 10–83 billion USD a year on aspects associated with food poisonings. In Australia, the
corresponding cost is over a billion USD a year, and in New Zealand, it is 86 million USD [15].
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Figure 2. Number of confirmed cases of selected bacterial zoonoses in the European Union between
2005–2016 [1,13,16–25].

2. Campylobacteriosis

The Campylobacteriaceae family is divided into four genera: Campylobacter, Arcobacter,
Dehalospirilum, and Sulfurospirilum [26]. Campylobacter spp. are small (0.2–0.9µm wide and 0.2–5.0µm
long), spirally curved, Gram-negative rods that do not form spores. They move in a way that
resembles a corkscrew. This movement is possible due to a single, polar flagellum positioned on one
or both ends of the cell [27,28]. Thirty-two species and 13 subspecies of those bacteria were identified.
As pathogens, the greatest role is played by Campylobacter jejuni subs. jejuni (95% of cases of zoonoses)
and Campylobacter coli (5% of infections) [26,29]. They differ from other pathogenic bacteria transmitted
by food as they have the ability to grow in an atmosphere containing nearly 10% of CO2 and 5%
of O2 (microaerophils) at a narrow range of temperatures ranging from 30 to 46 ◦C (the optimum
growth temperature is 40–42 ◦C), which makes them thermophilic [30,31]. Growth of those microbes
is not observed at water activity (aw) below 0.987, while the optimum value is 0.997. In conditions
that do not favour growth, those bacteria are able to form viable but nonculturable cells (VBNC).
Moreover, Campylobacter jejuni may survive for more than 4 h at 27 ◦C, which prevents these bacteria
from multiplying outside animal hosts or in food during storage [28]. The other feature that allows
survival of Campylobacter spp. in unfavourable conditions is their ability to form a biofilm on abiotic
surfaces, which ensures a supply of nutrients and mechanical protection even though they cannot
grow [32].

Already in 1909, bacteria belonging to genus Campylobacter were a known cause of animal
diseases, but only as late as in 1980 the discovery was made that they also cause health problems in
humans [33]. The incidence of infections caused by Campylobacter spp. has been constantly growing.
Currently it is the most common foodborne bacterial zoonosis in the world [33,34]. It is estimated
that Campylobacter spp. cause 500 million infections in the world every year [34]. In the European
Union, the number of cases of campylobacteriosis has been the highest of all zoonoses since 2005, with
the number of confirmed cases of infection that year being 197,363. After 2010, the number of people
diagnosed with this disease has been over 200 thousand a year. In 2012, the EFSA noted 214,268 cases,
and in 2015, the number of noted infections rose to 229,213, reaching 246,307 in 2016 [1,13,16–25].
It is estimated that in the United States, campylobacteriosis affects a million people a year, and in
Canada, there are over 200 thousand cases registered each year [35,36]. Cases of campylobacteriosis
have become common also in Africa, Asia, and the Middle East, particularly in children [32].

Sequencing of the C. jejuni NCTC 11168 genome demonstrated the existence of genes that code
some proteins with infectious potential. Despite numerous studies on the molecular genetics of
Campylobacter spp., their mechanisms of pathogenicity and virulence remain poorly understood [37].
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Although the bacteria are considered to be susceptible to stress associated with environmental
conditions, in the course of evolution, they were able to develop some complex mechanisms of
survival and virulence, as presented in Table 1 [38,39].

Table 1. Attributes of Campylobacter genus bacteria allowing them to infect and survive in a
host organism.

The Mechanism of
Survival/Virulence Description References

Mobility

- moving against the persitalsis, reaching target sites in
the intestine 1;

- adhesion to host’s cells, formation of a biofilm, secretion of
invasive proteins 1;

- required flagella and a chemosensory system (regulation of the
flagellar movement depending on environmental conditions) 2.

[40–43]

Drug resistance

- increasing antibiotic resistance resulting from the misuse of
antibiotics in medicine, veterinary medicine, and agriculture 2;

- acquiring antibiotic resistance while dwelling in the alimentary
tract of livestock and humans 2;

- resistance to fluoroquinolons (e.g., ciprofloxacin), macrolides (e.g.,
erythromycin), aminoglicosides (e.g., gentamycin, canamycin and
streptomycin), tetracyclines, and β-lactames (e.g., penicillins
and cephalosporins) 2.

[27,40,44–47]

Adherence to host’s
epithelial cells

- initial colonisation of intestinal epithelium 1;
- mediation of the adhesins on the surface of bacterial cells,

including: CadF (an external membrane protein), PEB1
(periplasmatic binding protein), JlpA (lipoproteins engaged in
adhesion to Hep-2 cells), and CapA (Camplyobacter A
adhesion protein) 2.

[40,41,48]

Invasion of host’s cells
- avoiding immunological response 2;
- significant role played by the external lipopolysaccharide

bacterial core 2.
[39,41]

Production of
toxins—cytolethal

distending toxin (CDT)

- a protein composed of the subunits coded by genes cdtA, cdtB,
and cdtC 2;

- cdtB encodes the enzymatic part of the toxin 2;
- cdtA and cdtC encode subunits responsible for binding the toxin to

the membrane of an eukaryotic cell 2;
- subunits CdtA, CdtB, and CdtC necessary for correct function of

the toxin 2;
- halting the eukaryotic cell during the G2/M phase of the cellular

cycle, stopping from transition into the phase of
mitosis—cellular death 2;

- not all strains produce CDT 2.

[28,40,49]

1 Attributes common for C. jejuni; 2 Attributes common for Campylobacter genus.

In 1981, British doctor of medicine David A. Robinson determined that the human infective dose of
Campylobacter jejuni is at the level of 500 to 800 microorganisms. The dose was later confirmed in other
studies [41]. In 1988, doctor Robert E. Black and colleagues carried out a study on 111 adult volunteers
in Baltimore. The subjects were administered 150 mL of pasteurised milk inoculated with two different
strains of Campylobacter jejuni isolated during the outbreak of campylobacteriosis in Connecticut
and Minnesota. The infective dose ranged between 8 × 102 and 2 × 109 bacteria. After administration,
volunteers were followed up by physicians for 12 days, and samples of stool were collected during
that period. The study confirmed that a low infective dose such as 800 Campylobacter bacteria is
sufficient to cause the disease, and the risk of infection increased with increasing inoculum. However,
the severity of symptoms was not dependent on the bacterial count [50]. There are also claims
that 360 colony-forming units (CFU) of Campylobacter spp. could cause symptoms associated with
campylobacteriosis, and 9 × 104 bacteria is considered the optimum infective dose [27]. The disease
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incubation time usually ranges between 1 to 7 days before the development of symptoms and is longer
in the case of individuals exposed to a lower infective dose. Symptoms accompanying the infection
range from watery diarrhea to bloody stool, with fever, abdominal pain, vomiting, and dehydration.
Symptoms disappear within 5–7 days [27,51]. In developed countries, the course of the disease is
usually more severe compared with developing countries [33]. Moreover, campylobacteriosis may be
associated with complications occurring in 1% of cases. Possible complications include: peripheral
neuropathies, including the Guillain–Barré Syndrome (GBS, neurological disorder characterised
by weakness of limbs, possible involvement of respiratory muscles, anaemia, and sensory loss);
reactive arthritis (REA, involving knees and ankles, occurring about a month after infection and
developing for as long as 5 years); and functional intestinal disorders, including irritable bowel
syndrome (IBS) [27,46,52,53].

Campylobacteriosis is most often caused by the consumption of contaminated poultry, beef,
or pork (Figure 3). It was determined that nearly 30% of all cases of infection were caused by the
consumption of poultry, including 50–80% of isolated Campylobacter spp. strains of chicken origin,
20–30% of cases caused by pathogens from cattle, and a low percentage of pathogenic strains originating
from other sources, including game [54,55]. Pathogenic bacteria which belong to Campylobacter genus
do not proliferate outside the alimentary tract of warm-blooded animals but may survive as long as
several weeks in food products, especially those stored at low temperatures [47,56].

Poultry consists of broilers, hens, turkeys, ducks, and ostriches, of which the meat industry uses
mostly broiler chickens (Gallus gallus) [41,46]. Campylobacter spp. colonise the mucosa of the caecum
and cloaca crypts of infected chickens, but may also be present in the spleen, blood, and liver [57].
The bacterial count per 1 gram of chicken faeces may reach the level of 1010, causing no infection
and leading to no changes in caecal mucosa [40,57]. In newborn chickens before 3rd week of life, no
presence of Campylobacter is found, which may be associated with the presence of antibodies from
the maternal organism, the addition of antibiotics in feed, and development of the intestine and
its microbiota [57,58]. After that time, if a single bird in the flock contracts the infection, it will be
transmitted to the rest within days (approximately 3 days) through pathogen-containing faeces, or by
rodents, water, insects, or farm workers [57–59]. It is estimated that in the EU, the amount of chicken
meat available in retail markets containing Campylobacter spp. ranges between 60% and 80%, whereas
in United States the amount is up to 98% [41].

Ruminants, including cattle, sheep, and goats, also act as a reservoir for Campylobacter
bacteria [41,56]. The alimentary tract of cattle is colonised by Campylobacter spp. mostly in the
gut (duodenum, jejunum, small and large intestines), rather than in the rumen [41,60]. It is estimated
that these bacteria are present in approximately 80% of animals in an infected herd. The bacteria are
less easily transmitted among sheep. The ratio of infected animals in a herd is estimated at 20% [41].
Although there are no studies on Campylobacter infections in small ruminants, there are some data
regarding pathogens isolated from sheep carcasses and from lamb available in retail markets, as well
from the liver, gallbladder, intestinal content, and faeces [61]. In the case of ruminants, the presence
of Campylobacter bacteria in their alimentary tract is usually asymptomatic but may account for
miscarriages in cows and sheep [56]. Besides the intestine, Campylobacter spp. may be present on the
surface of hooves, in bristles, or in lymphatic nodes [47]. Not only meat products may be a threat but
also dairy [41,56]. Raw milk is most often cross-infected with Campylobacter spp. during milking or
as a result of udder infection [28]. Despite that broad spectrum of food products obtained from that
group of animals, the most common source of infection transferred from ruminants is the environment,
namely surface water, soil, air, pets (particularly cats and dogs), wild animals, and livestock serving as
infection vectors [47,56].

Campylobacter spp. also inhabit the alimentary tract of 38–63% of pigs, but infections resulting
from the consumption of pork are rare (0.4% of all confirmed cases of campylobacteriosis [56]. Pigs are
considered to be the main reservoir of Campylobacter coli (90% of strains isolated from pigs), contrary to
other reported groups of animals that are mostly infected by Campylobacter jejuni [56,62]. Pathogenic
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Campylobacter coli demonstrate a higher resistance to commonly used antibiotics, such as macrolides
or quinolons, compared to Campylobacter jejuni [63]. On the other hand, the species is not resistant to
freezing and drying. For that reason, despite a high ratio of C. coli infected pigs in slaughterhouses,
the pathogen is rarely isolated from porcine carcasses. Campylobacter genus bacteria are isolated
from various porcine products, including hamburgers, roasted pork, and sausage [64]. The source of
campylobacteriosis may also be bone pork (e.g., loin) and offal (the liver, heart, kidneys, and guts) [65].

Figure 3. Reservoirs, transmission routs, and examples of source of infections caused by Campylobacter
genus [56,66].

Not only animals and food products of animal origin constitute a source of campylobacteriosis,
but vegetables are also a frequent vector of transmission. Contamination of vegetables may be the
result of direct or indirect contact with livestock faeces. Campylobacter spp. isolated from vegetables and
fruit may remain on their surface for 1 to as many as 8 days [56]. Infection is rarely primary (in the field,
as a result of fertilizing with slurry or use of contaminated irrigation water) but often secondary—in
kitchens (both home and commercial). In order to ensure appropriate hygienic conditions, vegetables
have to be carefully washed before being peeled [47,56].

3. Salmonellosis

Bacteria belonging to the Salmonella genus were named after doctor of veterinary medicine Daniel
Elmer Salmon, who along with his assistant, Mr. Theobald Smith, in the process of searching for causes
of cholera popular in hogs, isolated in 1885 a new species of bacteria—Bacillus cholerasuis, renamed to
Salmonella enterica serovar Cholerasuis [67,68]. Those bacteria are Gram-negative, relatively anaerobic,
nonsporulating, straight rods belonging to the Enterobateriaceae family [67,69,70]. They are intracellular
facultative pathogens, the size of which ranges between 2 and 3 µm. The shape of the rod is maintained
due to the bacterial cytoskeleton made of an actin-resembling protein [71]. Salmonella spp. rods may
survive in variable conditions. They are able to grow at temperatures ranging between 8 and 45 ◦C
(optimum temperature 37 ◦C), at the pH of the environment from 4.0 to 9.5 (optimum pH 6.5–7.0),
and in conditions of low water activity of 0.94 [68,72]. Those bacteria pose a great threat to the food
industry because they are able to adapt to environmental conditions that are significantly different from
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their normal range of growth. Some strains are able to grow at 54 ◦C, and others even at 2–4 ◦C [68].
Pathogenic Salmonella spp. can move using the peritrichal flagellum. The bacteria are also able to
ferment lactose, producing bisulfates. They are oxidase-negative and catalase-positive. Salmonella spp.
may also be identified based on their biochemical properties of urease hydrolysis and the ability to
grow in the presence of citrate as the sole source of carbon [73,74].

The nomenclature of the Salmonella genus is complex and inconsistent in the aspect of dividing
this bacteria genus into species, subspecies, subgenera, groups, subgroups, and serotypes (serovars).
The Salmonella genus is now divided into two species: S. bongori and S. enterica, based on genomic
relatedness and biochemical reactions [75]. In 2005, a third species was classified, S. subterranea,
but shortly after that it was shown not to belong to Salmonella genus [76]. The Salmonella genus is
divided into seven subspecies: I, II, IIIa, IIIb, IV, V, and VI. This division is based on usual habitat,
biochemical, and genetic criteria [75,77,78]. There are over 2500 serotypes. Each serotype has been
identified according to differences in structure of the lipopolysaccharide O-antigen (somatic) and of
the H-antigen (ciliary) [77,79]. The S. bongori species involves serotypes belonging to subspecies V, and
other subspecies, including I, II, IIIa, IIIb, IV, and VI, belong to the S. enterica species. They are: S. enterica
subsp. Enterica, S. enterica subsp. Salamae, S. enterica subsp. Arizonae, S. enterica subsp. Diarizonae,
S. enterica subsp. Hountanae, and S. enterica subsp. indica, respectively [78,80]. Most serotypes are
classified as S. enterica subsp. enterica (subspecies I) and they are responsible for 99% of salmonellosis
cases in humans and warm-blooded animals. They are also often isolated from birds [78,81,82].
The ability to adapt to the conditions in the host organism and the resultant pathogenicity depend
on the serotype of Salmonella genus bacteria. S. typhi and S. paratyphi A, B, and C are pathogenic for
humans, but their presence in animals is asymptomatic. On the other hand, serotype S. cholerasuis,
carried mostly by pigs, also causes salmonellosis in humans, and common serotypes S. enteritidis and
S. typhimurium cause infections of the human gastrointestinal tract, as well as various symptoms in
infected animals [83,84].

It is estimated that Salmonella spp. are the cause of over 90 million of diarrhea-associated diseases a
year in the whole world, with 85% of those cases being linked to food [85]. The literature also reports the
estimated annual number of cases of salmonellosis in the world, ranging between 200 million to over
1 billion [86,87]. The expected world fatality rate associated with salmonellosis is over 150 thousand.
Fatalities are most often observed in children below the age of 4 years who are infected with serotypes
Enteritidis or Typhimurium [80,88]. A reduced incidence of salmonellosis has been observed in
the EU. The number of confirmed cases was 176,395 in 2005, 131,468 in 2008, 99,020 in 2010, 91,034
in 2012, 94,625 in 2015, and 94,530 in 2016, thus indicating a slightly increased incidence in recent
years [1,13,16–25,80]. Over a million cases of salmonellosis a year are estimated in the United States.
Nearly 20,000 require hospitalisation and there are approximately 400 cases of death resulting from
infection with Salmonella [89,90].

The virulence of pathogenic Salmonella spp. is associated both with chromosomal and plasmid
genes [91]. In the bacterial chromosome, there are large gene cassettes, called pathogenicity islands
(SPIs), which code nearly 60 genes responsible for specific interactions with the host organism [91,92].
The Salmonella spp. infection cycle starts after the ingestion of microbes. Through the stomach, the
bacteria reach the small intestine. The pathogenicity of Salmonella spp. depends on the serotype and
the host’s immunity, and its virulence is determined by the factors presented in Table 2 [93,94].
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Table 2. Factors determining the virulence of Salmonella genus bacteria.

The
Mechanism of

Virulence
Description References

Adherence to
host’s cells

Adherence modulated by:

- fimbriae (protoplasmic outgrowths)—proteins interacting with
the host’s receptors on the tips;

- adhesins (proteins): BapA, SiiE, ShdA, MisL, and SadA;
- flagellae (up to 10 randomly distributed over the cell

surface)—mobility of the cell may indirectly facilitate adhesion.

[78,84,93]

Invasion and
replication
inside
host’s cells

- after binding the pathogen to host’s cells;
- transmission of effectors to the cytosol of the infected cell.

Effectors stimulate the cell’s signalling system through the type
III secretion.

- secretion system coding genes are localised on SPIs;
- effector proteins responsible for invasion and replication of

Salmonella spp. influence also the survival and stimulated
production of proinflammatory cytokines (development of
infection).

[86,93,95–97]

Polysaccharide
coating

- the superficial part of the membrane bilayer of Gram-negative
bacteria is composed almost entirely of lipopolysaccharides (LPS);

- Lipid A—the lipid part of the external lipopolysaccharide layer,
causes various immunological responses of the host organism
(e.g., activation of the complex of toll-like receptors 4-MD2-CD14,
which leads to expression of proinflammatory molecules or
adhesion proteins).

[98–102]

Production
of toxins

- endotoxins (lipid A);
- exotoxins (cytotoxins and enterotoxins).

[99,102]

Pathogenic bacteria which belong to the Salmonella genus cause three types of salmonellosis in
humans: noninvasive and nontyphoid, invasive and nontyphoid, and typhoid fever caused by the
serotype S. typhi, as well as paratyphoid fever caused by two serotypes S. paratyphi A, B, and C [82,103].

Serotypes causing typhoid fever are transmitted between people with no mediation of an animal
as a vector [70]. Infection may be associated with food or water, and the presence of those bacteria
is closely related to poor hygiene. Transmission is affected by overpopulation in areas of poor
sanitary conditions [104]. Stating the exact number of typhoid fever cases is impossible. It is
believed that the world incidence may reach as high as 21 million a year, with over 200,000 fatal
cases [82,105]. The highest number of cases of typhoid fever is noted in Africa and in Southeast
and Central Asia [73,106]. Typical symptoms include: headache, stomach ache, fever, diarrhea or
constipation, and loss of appetite, but other possible symptoms are: respiratory problems, lethal
neurological changes, perforation of the intestine, and hepatic and splenic injury [67,107].

Salmonellosis is caused by all nontyphoid serotypes of the Salmonella genus (excluding S. typhi and
S. Paratyphi A, B and C), isolated both from humans and animals, including livestock [82]. Serotypes
S. Typhimurium, S. enteritidis, S. newport, and S. heidelberg are most often responsible for food poisoning,
but S. Cholerasuis and S. Dublin also cause diarrheic diseases [73,82]. Pathogens enter the organism
with water or food infected with faecal microbiota. For that reason, the environment constitutes an
important vector in the dissemination of Salmonella spp. [73,82,84]. The infective dose ranges between
106 and 108 cells, but in some people, even the dose of 10 cells may lead to the development of
salmonellosis [108,109]. Incubation of the disease lasts for 6–72 h, depending on the infective dose
and the host’s condition. In the majority of cases, the infection lasts no longer than 7 days [67,90,109].
Typical symptoms of infection with nontyphoid serotypes of Salmonella spp. are stomach ache and
diarrhea, but other possible symptoms include: vomiting, nausea, fever, shivers, muscular or articular
pain, cramps and loss of appetite [85,107,109,110]. After the disappearance of symptoms, Salmonella
may still reside in the intestines of an adult for 4 weeks, and in children for up to 7 weeks. A small
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number of people demonstrates an asymptomatic carrier state of pathogenic bacteria for a year after
the disappearance of symptoms [111]. In the majority of cases, nontyphoid salmonellosis does not
require hospitalisation, and only fluid therapy is necessary in the cases associated with severe diarrhea.
Antibiotic therapy is avoided in order to hinder the formation of drug-resistant strains, but in the
case of a complication with bacteraemia, antibiotic therapy with fluoroquinolons or 3rd generation
cephalosporins is necessary [82,85,112]. Bacteraemia develops in 5–10% of people infected with
Salmonella spp. and may lead to focal infections, such as meningitis, endocarditis, arthritis, and
osteitis [77,110].

Infection with Salmonella may be a result of direct contact with infected animals or indirect
contact via their environment. Also, the consumption of infected products or food prepared in an
infected environment may account for food poisoning [89]. The main source of pathogenic Salmonella
causing food poisoning in humans is eggs and egg products [113]. Also, pigs and pork constitute an
important reservoir for numerous serotypes of those pathogens, as well as cattle and dairy products
(Table 3) [113–116]. Most often, meat becomes infected with Salmonella spp. during the production
process when the bacteria that are abundant in animal intestines may become transferred onto meat
as a result of careless processing or improper hygiene [117]. Fresh meat is a good environment for
the growth of pathogenic Salmonella spp. due to a high content of nutrients, pH of 5.5–6.5, and high
water activity (aw = 0.98–0.99) [118]. Also, vegetables contaminated with animal faecal microbiota
may constitute a reservoir for Salmonella spp. [119].

The intestines of poultry, especially of chicken and turkeys, are asymptomatically colonised by
Salmonella spp. as a result of a horizontal or vertical transmission of bacteria at the stage of primary
production [108,120]. The horizontal route of infection includes contaminated feed and water, as
well as bedding, soil, air, and farm personnel [121,122]. The vertical route includes direct infection
of offspring by its flock [116,121]. Salmonella spp. may be present in as much as 65% of individuals
in a flock. Serotypes colonising the gastrointestinal system of poultry are variable, depending on
the geographic location and the time of the year, and part of them are repeatable (e.g., S. Enteritidis,
S. Typhimurium) [121,123,124]. Besides the unrestricted dissemination and colonisation of intestines,
Salmonella spp. may also be transferred to the liver, spleen, and ovaries [120]. S. Gallinarum and
S. Pullorum serotypes are pathogenic for poultry but not for humans. However, they cause significant
losses in the poultry industry [73,125]. Many strains isolated from poultry and responsible for food
poisoning in humans demonstrate resistance to selected antibiotics. For that reason, much attention is
drawn to eggs and poultry meat as sources of Salmonella bacteria [124]. Infected birds are the primary
source of Salmonella spp. infection in the production environment. Bacteria may be introduced at every
stage of the production process and cause infection of the final product [121,126]. In the case of egg
production, egg content may be infected at the stage of forming because of bacterial colonisation of the
hen’s genital system. Moreover, eggs may be also infected through the environment, and pathogenic
bacteria may be present not only on the surface of an egg shell, but also penetrate the inside [87].

Pigs and pork also constitute an important reservoir of Salmonella spp. Infection with these
pathogens is asymptomatic in those animals and affects neither growth nor production parameters.
The only exception is S. Cholerasuis, which makes pigs ill [72,127]. Pathogenic bacteria colonise the
intestines of those animals, reaching the count of 103 cfu/g, and in animals subject to stress-inducing
conditions (e.g., a transfer to a slaughterhouse), the count may be increased, which may lead to the
development of the symptoms of infection and increased cross-infections [127,128]. Pork becomes
contaminated with Salmonella spp. in slaughterhouses by direct or indirect contact with a carcass with
the intestinal content or faeces, or through the production environment [115]. Pigs may be infected
at the stage of breeding, via feed, infected by animals from other farms, from the environment, or by
vectors such as insects, fleas, birds, dogs, or cats [129].
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Table 3. Salmonella spp. serotypes most often isolated from animal reservoirs in European Union countries. Underlined serovar was the one isolated most
frequently [1,13,25].

Year

Animal Reservoirs

Broiler Cattle Pigs Turkey

Salmonella Serotypes

2014

S. Typhimurium
S. Infantis

S. Enteritidis
S. Mbandaka

S. Livingstone
S. Kedougou
S. Enftenberg
S. Kentucky

S. Typhimurium Copenhagen
S. Brandenburg

S. Typhimurium
S. Enteritidis

S. Dublin
S. Mbandaka

S. Coeln
S. Give

S. Montevideo
S. Anatum
S. Bredeney

S. Typhimurium Copenhagen

S. Typhimurium
S. Infantis
S. Derby

S. Typhimurium monophasic
S. Typhimurium Copenhagen

S. Rissen
S. London

S. Muenchen
S. Livingstone ar14

S. Typhimurium
S. Infantis
S. Derby

S. Enteritidis
S. Newport

S. Hadar
S. Stanley

S. Saintpaul
S. Virchow
S. Kottbus

2015

S. Typhimurium
S. Infantis

S. Enteritidis
S. Derby

S. Typhimurium monophasic
S. Livingstone
S. Mbandaka

S. Cerro
S. Thompson
S. Kedougou

S. Typhimurium
S. Infantis

S. Enteritidis
S. Dublin

S. Typhimurium monophasic
S. Mbandaka
S. Newport
S. Goldcoast

S. Brandenburg

S. Typhimurium
S. Infantis

S. Enteritidis
S. Derby

S. Typhimurium monophasic
S. Goldcoast

S. Rissen
S. Brandenburg

S. London

S. Typhimurium
S. Infantis

S. Enteritids
S. Derby

S. Typhimurium monophasic
S. Newport

S. Kedougou
S. Branderburg

2016

S. Enteritidis
S. Typhimurium

S. Typhimurium monophasic
S. Infantis
S. Derby

S. Enteritidis
S. Typhimurium

S. Typhimurium monophasic
S. Infantis
S. Derby

S. Enteritidis
S. Typhimurium

S. Typhimurium monophasic
S. Infantis
S. Derby

S. Enteritidis
S. Typhimurium

S. Typhimurium monophasic
S. Infantis
S. Derby
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Salmonella spp. is also increasingly present in cattle, both bred for meat and for milk [130].
Almost 40% of a herd may be infected, and the risk of infection increases with the size of the herd [131].
Beef is usually infected at the stage of slaughter, and pathogenic Salmonella bacteria are introduced to
the breeding environment with externally sourced animals, water, feed, rodents, birds, and the farm
personnel [132]. Cattle may be asymptomatic carriers of the pathogenic bacteria (the bacteria may
remain in their gastrointestinal tract for periods ranging between a few months and a year), but there
may also be symptoms of infection present, including diarrhea, fever lasting for up to 7 days, anorexia,
dehydration, reduced milk production, miscarriages, or the presence of toxins in blood [131,132].
Mortality associated with Salmonella spp. infections is high in calves but still not very common, just
like miscarriages. Salmonellosis in cattle puts producers at risk of direct economic loss associated with
mortality or body weight loss, and of indirect loss caused by reduced feed conversion or medical care
costs [131].

4. Yersiniosis

There are 17 species in the Yersinia genus belonging to the Enterobacteriaceae family. Three of
them are pathogenic for humans—Y. pestis (transmitted by fleas and air bacteria causing plague),
Y. pseudotuberculosis (the aetiologic factor of rodentiosis), and Y. enterocolitica (the aetiological factor of
yersiniosis)—and cause diseases of the gastrointestinal tract in humans. Infections associated with
Y. pseudotuberculosis are rather rare [133–135].

The bacteria belonging to the Yersiniae genus are rods or cocci, 0.5–0.8 µm wide and 1–3 µm
long, nonsporulating. Those microbes are mobile in temperatures ranging between 22 and
30 ◦C due to a flagellum positioned on a pole of the bacterial surface. They are not mobile at
37 ◦C [136]. Y. enterocolitica, causing the zoonosis called yersiniosis, are Gram-negative, relatively
anaerobic, catalase-positive, nonsporulating, and absolutely psychrophilic enteropathogens [133,135].
Those bacteria are able to grow at temperatures ranging between 0 and 45 ◦C, whereas their optimum
growth temperatures range between 25 and 32 ◦C [133,137]. Y. enterocolitica are able to survive
in the VNBC condition and proliferate and produce a thermostable toxin in cooling conditions
(4–8 ◦C). Because of that, they pose a great problem for food [138,139]. These pathogens grow at
an environmental pH lower than 9, and the water activity must not be lower than 0.96. Low pH and
the presence of organic acids, including acetic acid, lactic acid, and citric acid, may inhibit the growth
of Y. enterocolitica [140].

There are six different biotypes of Y. enterocolitica reported in the available sources, namely, 1A, 1B,
2, 3, 4, and 5, classified based on biochemical reactions: production of indole, production of acids from
xylose, trehalose, saccharose, sorbose and sorbitol, hydrolysis of salicin and eskulin, dekarboxylation
of ornitine and o-nitrophenyl-β-D-galactopiranoside, Voges-Proskauer reaction, and reduction of
nitrates [141,142]. Eleven of the serotypes belonging to those biotypes were associated with the
development of yersiniosis in humans. The highest incidence of yersiniosis in Europe is caused by the
bacteria belonging to biotype 4, serotype O:3 [142]. Biotype 1A is common in the environment, and
considering the absence of the majority of virulence markers (chromosomal and plasmid pYV), it is
considered nonpathogenic [142–144]. Serotypes of Y. enterocolitica are classified based on the structure
of the lipopolysaccharide O-antigen, constituting a part of the superficial lipopolysaccharide layer of
the cell [145]. The most pathogenic bioserotypes/serotypes are: 1B/O:8, 2/O:5,27, 2/O:9, 3/O:3, and
4/O:3, with the last one being responsible for the highest incidence of yersiniosis among humans in
Europe, Canada, Japan, and China [146,147].

Virulence factors of Y. enterocolitica are pieces of genetic information contained in the chromosome
(more stable virulence markers) and in the plasmid of Yersinia—pYV, approximately 70 kilo base pair
(kb) long [140,148]. After consumption of infected food or water, Y. enterocolitica reach the distal part of
the small intestine and the proximal part of the large intestine, start to proliferate there, and colonise
the environment, leading to infection of the host organism [140,141,149]. Mechanisms of virulence of
Y. enterocolitica are presented in Table 4.
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Table 4. Mechanisms and factors facilitating infection of the host’s organism with Y. enterocolitica.

Virulence
Mechanisms/Factors Description References

Adhesion and invasion
of host’s cells

Adherence modulated by:

- autotransporters (type V secretion systems), including YepE,
YadA (superficial protein, coded by plasmid pYV, binding
pathogens to epithelial cells, phagocytes, and components of
cellular matrix, protection against neutrophils, autoaggregation of
microbes, triggering the immunological reaction);

- invasine (Inv)—encoded by the inv gene in the chromosome,
expressed at temperatures up to 25 ◦C, at pH = 5.5. The gene may
be expressed at 37 ◦C. It is present on the external bacterial
membrane and participates in adhesion and invasion of intestinal
epithelial cells (binding to β1-integrins on surface of M cells of
Peyerąs patches);

- fimbrial adhesins;
- Ail protein—an extracellular membraneous protein encoded by

the chromosomal gene ail, supports the YadA protein function,
allows penetration of the rods into host’s cells, increases bacterial
resistance to the bactericidal effect of the complement.

[136,138,150–156]

Secretion system
type III

- encoded by genes localised on the pYV plasmid, expression at
37 ◦C with low concentration of calcium ions;

- composed of effector proteins Yop (Yersinia outer proteins),
proteins forming a needle YscF (Yersinia secretion protein F),
translocator YopD, and the LcrV protein providing a shield;

- YopB connects YopD with LcrV forming a membranous
complex—transmission of effectors into the cells of the
infected organism;

- disturbs the function of both congenital and acquired
immunological response, inhibits phagocytosis.

[137,138,149,157–159]

Mobility
- dependent on the presence of a flagellum;
- necessary for the invasion of host’s cells—migration and adhesion

to the intestinal epithelium.
[136,160]

Lipopolysaccharides

- endotoxins (lipid A)—a strong activator of the
immunological response;

- antigen O—part of the superficial membrane, affects adhesion
and invasion of pathogens into host’s cells.

[135,136]

Thermostable
enterotoxin Yst

- a protein encoded by the chromosomal gene yst;
- not denaturated during 20 min heating at 100 ◦C;
- functionally and structurally similar to the toxins of other bacteria

causing food poisoning;
- biotype 1A (no virulence markers) possesses the ystB gene

encoding the heat resistant YstB toxin that may be secreted at
37 ◦C;

- product of expression of the ystA gene, present in the case of
virulent biotypes.

[135,136,144,161–164]

Production of urease - neutralisation of the environment, survival of pathogens in the
gastrointestinal system. [153,155]

Avoiding the host’s
immunological response

- YadA proteins (combined with the antigen O) and Ail—avoiding
proteins of the complement system present in plasma;

- Yop—modulation (delay) of the host’s immunological response,
stimulation of the production of anti-inflammatory cytokines
(inhibition of the inflammation).

[153,155,165]

The infective dose of pathogenic Y. enterocolitica is higher compared to that of other pathogenic
bacteria present in food, and is 108–109 cells [164]. Incubation time is nearly 3–7 days, but may range
between 1 and 11 days [133,166]. Symptoms of the disease may be mild but may also have a form
of severe gastritis and enteritis, disappearing within 1–3 weeks [137,141,166]. Yersiniosis affects all
humans, but children under the age of 5 years, people with reduced immunity, and the elderly are
more at risk. The disease is manifested by fever, stomach ache, and diarrhea (often bloody), and
in adult patients often resembles appendicitis [140,146,167]. Complications may involve erythema
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nodosum, osteoarthritis, bacteraemia, purulent hepatitis, splenitis, or nephritis, myocarditis, and
less often sepsis and endocarditis [137,141,151]. Infection with Y. enterocolitica is often associated
with nonspecific symptoms, resembling diseases of other aetiology. For that reason, many cases
of yersiniosis are misdiagnosed [167]. In the case of infected individuals with reduced immunity,
antibiotic therapy is recommended. According to WHO recommendations, the therapy is based on
tetracyclines, chloramphenicol, gentamycin, or cortimoxazole [149]. Due to mutations occurring in
the bacterial chromosome, the phenomenon of antibiotic resistance to fluoroquinolons is observed in
Y. enterocolitica, but also to ampicillin, ticarcilin, amoxicillin/clavulanian, cefazolin, and cefalotin [168].

According to US Centers for Disease Control and Prevention (CDC) estimates presented in 2016,
yersiniosis affects nearly 117,000 people a year in the United States, including 640 cases requiring
hospitalisation and 35 resulting in death [169]. In the EU, a decreasing tendency of confirmed cases
of yersiniosis has been observed between 2005 and 2016. The incidence in 2005 was 9630, and in
2016 was 6861 [1,13,16–25,166,170]. Incidence of Y. enterocolitica infections is carefully monitored in
developed countries, but no sufficient diagnostics are available in Africa and the Middle East, and no
exact number of cases of the disease is known for those areas [171].

The main source of yersiniosis in humans is food, in particular raw or undercooked pork, but
also fresh and pasteurised milk and other dairy products, infected plants, seafood, and drinking
water [167,172]. Food may be contaminated primarily or by contact with an infected surface or
equipment [167]. Although pigs are a leading reservoir of Y. enterocolitica, those bacteria are abundant
in the environment and are also isolated from other animals—including poultry, cattle, sheep,
and goats—and from wild animals such as rodents, deer, boars, and also cats and dogs [135,173].
Pigs carrying Y. enterocolitica do not have any symptoms of infection. Pathogens occupy their
tongues, oral cavities, tonsils, lymph nodes, and intestines and are present in their faeces [135,174,175].
During the slaughter and processing of meat, Y. enterocolitica may be transferred from infected tissues
onto other meat. Meat from the areas close to the head and sternum is the most exposed [176].

5. Listeriosis

The aetiological factor of listeriosis in humans is the bacteria Listeria monocytogenes. They were
first described in 1926 by Murray and colleagues during an outbreak involving rabbits and guinea
pigs in a laboratory in Cambridge (Great Britain). At that time, the bacteria were called Bacterium
monocytogenes [177,178]. In the early 1980s, this pathogen became associated with human food
poisonings [179,180].

The Listeria genus incorporates 17 bacteria species divided into two groups: Listeria sensu stricto,
which includes L. monocytogenes, L. seelgeri, L. ivanovii, L.marthii, L. welshimeri, and L. innocua; and
Listeria sensu lato, which consists of another 11 species divided into three clades, among which there
are five new species (L. aquatic, L. floridensis, L. cornellensis, L. grandensis, and L. riparia) described by
den Bakker et al. (2014). Only L. monocytogenes are considered pathogenic for humans [177,181,182].
The bacteria are Gram-positive, relatively anaerobic, oxidase-negative, and catalase-positive organisms
having the form of small mobile rods (0.4–0.5 × 1–2 µm) that are unable to produce spores [177,183].
L. monocytogenes are mobile in temperatures ranging between 22 and 30 ◦C, but at 37 ◦C they do not
form a flagellum [183,184]. Those bacteria are able to grow in unfavourable conditions, such as high
salt concentration, low temperature (growth already at −0.4 ◦C), and high temperature (maximum
45 ◦C), and also demonstrate growth over a broad spectrum of pH (from 4.4 to 9.4) and in a low water
activity of 0.9 [178,180,185]. Total inactivation of those pathogenic bacteria occurs at 75 ◦C [186].

Thirteen serotypes of L. monocytogenes were identified (1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4b, 4c,
4d, 4e, 4ab, and 7). The following are the serotypes that are most commonly isolated from infected
humans: 1/2a, 1/2b, 1/2c, and 4b [186,187]. Strains belonging to separate serotypes differ in terms of
the antigenic determinants located on the cellular surface, including that of the thermostable somatic
antigen O and the thermophilic ciliary antigen H [186,188]. Based on the differences in the nucleotide
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sequence of three genes (flaA, iap, and hly), four evolution lineages are also classified (I, II, III, and IV).
Individual serotypes are affiliated with those lines [186–188].

L. monocytogenes are intracellular pathogens, which means that for infection of the host organism,
bacteria have to not only penetrate intestinal cells, but also cells of the host’s spleen, liver, brain,
heart, and placenta [189,190]. Following the invasion of cells, pathogenic bacteria are located in the
vacuole. After leaving that location, bacteria start proliferating, and due to an actin-based motility
mechanism, they may travel to other cells without triggering the host’s immunological response [191,
192]. The pathogenicity of those bacteria is based on the production of the following virulence factors,
listed in Table 5.
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Table 5. Factors determining the pathogenicity of Listeria monocytogenes.

Virulence Factors Description References

The adhesive
protein (LAP)

- molecular mass 104 kDa;
- adherence of the bacteria to the intestinal epithelium;
- expression at a low availability of oxygen and nutrients, at

37–42 ◦C;
- secreted by SecA2 to the outside of the cell and bound to the

bacteria surface in the case of pathogenic strains.

[193–195]

Internalines

- adhesion and invasion of host’s cells;
- anchored in the cellular wall or covalently bound

to peptidoglycan;
- the most important role is played by internalin A (InlA) and

internalin B (InlB)—they allow production of a biofilm;
- InlA—binding to E-cadherin receptors on the surface of host

cells (responsible for intercellular interferences)—local
changes of the cytoskeleton, allow bacterial penetration of
host cells;

- InlB—recognition of hepatocyte growth receptors (Met, gC1qR
and glycosoaminoglycans)—internalisation of host cells;

- InlA and InlB encoded by the operon inlAB localised in the
bacterial chromosome;

- other, e.g., InlJ, InlH, InlF, or InlC—responsible mostly for
adhesion of pathogens to host cells.

[190,196–200]

Listeriolysin O

- a toxin encoded by the hly gene localised on the Listeria
pathogenicity island 1 (LPI-1);

- binding to cholesterol molecules contained in membranes and
oligomerisation, allows penetration of listeriolysin into the
membrane, forming openings, and finally allows
L. monocytogenes getting out of vacuoles;

- avoiding macrophages and penetration into the host
cell cytosol;

- affects signal pathways in the cytosol—modulation of the
course of infection.

[190,201–203]

Secretion systems

- a path depending on Sec (a classical system of secretion of
proteins marked with a signal peptide on the N terminal in
prokaryotes);

- TAT pathway;
- FPE (fimbrilin protein exporter);
- FEA (flagellar export apparatus)—homologous to the

secretion system type III;
- the choline pathway;
- the Esx-1/Wss system.

[191]

Phospholipases C
PlcA and PlcB

- exiting host cells, transport to neighbouring cells;
- support the effect of listeriolysin O;
- products of genes plcA, plcB, respectively, located on LPI-1.

[189,201,204]

Superficial proteins
ActaA

- activation of the actin polymerisation process around bacterial
cells—formation of the actin tail allowing L. monocytogenes
to move and penetrate other cells of the organism,

- possible promotion of autoaggregation, formation of a biofilm,
avoiding autophagia (survival of the pathogen in
the intestine);

- a product of expression of the gene actA localised on LPI-1.

[201,205,206]

The OrfX protein
- oxidation of macrophages—development of infection;
- a product of expression of the gene orfX localised on LPI-1.

[192]

Listeriosis much more often affects elderly people and pregnant women, as well as those
individuals whose immunity is weak for various reasons, including neonates and children under
the age of 5 years, organ transplantation patients, cancer patients, and HIV carriers [200,207].
Infections associated with L. monocytogenes are characterised by a long incubation period ranging
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between 1 and as many as 70 days (average length of 8 days). The period may be even longer in
pregnant women (17–67 days). A different incubation time is also noted in individuals with the
symptoms of bacteraemia (1–10 days; average: 2 days), feverish gastroenteritis (mean: 24 h; range
from 6 h to 10 days), as well as in patients with listeriosis attacking the nervous system (1–14 days,
average: 9 days) [208,209]. The exact infective dose of L. monocytogenes is not defined because it
depends on the susceptibility of the host organism and the virulence of a particular strain. It is
agreed that 106 cfu/g is sufficient to trigger symptoms [209]. Symptoms of listeriosis may appear
within 24 h and in otherwise healthy adults they may be: articular pain, headache and stomach ache,
diarrhea, nausea, vomiting, lack of appetite, weariness, and somnolence. They usually disappear
within 1–3 days [180,184]. In the case of pregnant women, infection with L. monocytogenes, besides
fever and diarrhea, may lead to miscarriage. In neonates, the infection may lead to sepsis, pneumonia,
or meningitis [207]. Ampicillin and amoxycyclin are most often used in treatments of listeriosis,
sometimes with gentamycin, erythromycin, and vancomycin [184,190]. L. monocytogenes bacteria are
also susceptible to penicillin, rifampicin, and cotrimoxazol and demonstrate natural resistance to
fluoroquinolons and cephalosporins [210].

Although listeriosis is not a common disease, the majority of its cases are associated with
necessary hospitalisation. The disease is also associated with a high mortality rate, reaching 20–30%,
and for risk-group patients even 75% [211,212]. The number of confirmed cases of listeriosis among
the inhabitants of the EU demonstrated a growing tendency. In 2005 it was 1439 and in 2016 reached
2530 cases [1,13,16–25]. The CDC estimates that there are 1600 cases of listeriosis annually in the United
States, and approximately 260 cases of associated death [213]. The Australian official organization, the
Food Standards, reports 150 cases of patients with listeriosis hospitalised every year, including 10%
dying because of the infection [214].

L. monocytogenes are common in the environment and isolated from the soil, surface water, waste
water, faeces, feed, agricultural environments, and food processing plants [215]. Moreover, pathogenic
strains of those bacteria may also colonise domestic animals, such as cattle, sheep, goats, horses,
poultry, but also wild birds, fish, and shellfish [216]. It is estimated that 99% of the cases of listeriosis
are associated with contaminated food, although the long incubation period largely hinders clear
determination of the infection source [209,217]. Pathogenic L. monocytogenes are often isolated from
food products for direct consumption, including meat (beef, turkey, hotdogs, cooked ham, pork jelly),
milk, dairy (made of pasteurised milk: butter, soft cheese, cottage cheese; made of fresh milk: Mexican
style soft cheese, home-made cheese), fish (smoked, marinated, carpaccio), and other seafood (crab,
shrimps, smoked mussels), but also ice cream, fresh vegetables (corn, celery, cabbage) and fruit, e.g.,
cantaloupe [178,209,216,217].

L. monocytogenes causes infection both in wild and domestic ruminants, as well as in
monogastric animals. Dissemination of pathogenic bacteria among animals is most often a result of
poor quality feed [218]. Both in humans and animals, listeriosis may be associated with symptoms
including enterogastritis, sepsis, and infections of the CNS (meningitis or myelitis), and also may lead
to miscarriage [219].

Ruminants may be asymptomatic carriers of L. monocytogenes, but there are also cases of infective
diseases caused by those pathogenic bacteria. In both cases, animals disseminate bacteria in the
environment with faeces. In favourable conditions, microorganisms are able to survive there for a long
period of time. That may account for infection of other animals in the herd, as well as of animals in
other herds using the same pasture [113,220]. In the case of outbreaks among cattle, sheep, and goats,
the bacteria colonise 7.5–29.4% of individuals in the herd (in Europe), but despite the low ratio of
infected animals, their mortality may reach 100% [221,222]. L. monocytogenes may infect cattle of both
sexes and various ages, but animals below the age of 3 years are more susceptible. In the case of sheep,
the course of the disease is more severe than in cattle. In that latter case, the ratio of recovery may
reach 50% [223]. Even though there is evidence suggesting beef, raw milk, and milk derived products
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are sources of L. monocytogenes and the disease is defined as zoonosis, a direct link between ruminant
and human listeriosis is not understood [222,224,225].

Pigs may also be carriers of L. monocytogenes and the infection may be asymptomatic. However,
a neural form of the infection is also observed (in older animals) or sepsis (rarely). No pathogens
are isolated from faeces of those animals [220,223]. Pigs may be infected via the gastrointestinal
tract, but also via the respiratory tract and the conjunctiva [223]. Despite swine being mostly healthy
carriers of L. monocytogenes, pork meat and derived products are linked to human infections and
production-environment contamination [220].

Also, poultry may be colonised by L. monocytogenes. However, the consumption of infected
poultry meat is not associated with a high incidence of listeriosis. There are also no data on the
frequency of occurrence of those pathogens in poultry and meat obtained from them [211].

6. Conclusions

Livestock diseases are associated not only with the economic loss caused by reduced populations,
reduced productivity, and veterinary care costs, but also pose a threat to human health [226]. Because of
the increased demand for food related to the growing human population, we have become exposed to
pathogens present in the production environment and food poisonings associated with them [2].

The best solution to limit the incidence of zoonoses in humans is to control and prevent
dissemination of pathogens in animals constituting the main reservoir of the infections [227].
In industrialised countries, animals are examined before slaughter, there are vaccinations and
monitoring of animals, and also the hygienic conditions of the production facilities are controlled
(physical decontamination). However, those methods often prove ineffective in developing
countries [226,227]. For these reasons, it is crucial that education in areas such as microbiology,
sanitation, hygiene, food science, good agricultural and good manufacturing practices, and also
implementation of risk assessment through hazard analysis and critical control points should be
considered as necessary [228].
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