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The planetary boundaries framework 
demarcates a global safe operating space  
for humanity based on Earth system 
dynamics1,2 (Fig. 1a). The framework defines 
boundaries to human pressures on nine 
biophysical systems and processes that 
regulate the state and resilience of the  
Earth system, using the comparatively stable 
interglacial Holocene (initiated 11,700 years 
ago) as the baseline. Conceptually, each 
boundary is associated with a control 
variable that allows tracking of risks for 
Earth system impacts. Notably, persistent 
and substantial boundary transgression of 
either of the two core boundaries — those 
for ‘Biosphere integrity’ and ‘Climate  
change’ — can push the Earth system 
towards an irreversible state shift3. 
Transgression of other boundaries, including 
that of freshwater use, imply deterioration 
in Earth system functioning that can 
increase the risk of regional regime shifts 
and predispose transgressions of core 
boundaries. Based on the precautionary 
principle, the boundary is placed 
conservatively at the lower level of  
scientific uncertainty.

extensive human modifications of green 
water functions5–7. For example, according 
to the current definition, deforestation that 
deteriorates green water functioning in 
favour of increased blue water availability 
would not contribute towards boundary 
transgression8. Given the fundamental 
importance of green water for Earth system 
resilience, there is an urgent need to better 
understand the level of terrestrial wetness 
that maintains a Holocene- like state of 
the Earth system. Indeed, green water is 
critical for supporting and regulating most 
terrestrial biosphere processes, including 
energy, carbon, water and biogeochemical 
cycles5, with human perturbation generating 
non- linear changes, collapse and irreversible 
regime shifts in terrestrial ecosystems and 
hydroclimatic regimes5,9–12.

In this Perspective, we propose a green 
water PB for quantifying green- water- related 
changes that reflect the capacity of the Earth 
system to cope with human perturbations 
(Fig. 1b). We identify a set of processes 
that comprehensively captures the 
hydroecological and hydroclimatic functions 
of green water in the Earth system, and, 
based on scientific evidence, propose a 
definition of a green water PB control 
variable. Subsequently, the green water PB’s 
boundary position and current status are 
set, and the use and interpretation of the PB 
discussed to guide sustainability governance. 
Finally, we discuss research priorities 
to better understand the biophysical 
and societal Earth- system- scale risks of 
substantial and persistent green water 
modifications. In doing so, we argue that 
the ‘Freshwater use’ PB should be renamed 
to the ‘Freshwater change’ PB composed of 
green and blue water components (Fig. 1a).

Green water as control variable
In order to establish and define a green 
water PB, an appropriate control variable 
needs to be selected. Candidate variables 
must represent important green- water 
control (Fig. 1b), rather than green- water 
responses, to ecological and climatic change. 
For this reason, green water indicators 
of anthropogenic appropriation (for 
example, green water footprint13) cannot 
be considered. Instead, major non- blue 
freshwater flows and stocks — precipitation, 
evaporation and soil moisture — form viable 

Global- scale and basin- scale definitions 
of the ‘Freshwater use’ planetary boundary 
(PB) are solely defined by blue water 
(rivers, lakes, reservoirs and renewable 
groundwater stores) as a provisional proxy 
for overall water flux changes in a river 
basin. At the global scale, the boundary 
is currently set to an annual maximum 
of 4,000 km3 consumptive blue water use. 
At the basin scale, boundary positions are 
set based on minimum levels of monthly 
environmental water flow required to 
maintain adequate aquatic ecosystem states4. 
According to an estimated current global 
water withdrawal rate of 2,600 km3 year−1, 
the ‘Freshwater use’ PB is deemed to be 
within the planetary- scale boundary, despite 
widespread basin- scale transgressions2,4.

Yet, human pressures on green water 
(terrestrial precipitation, evaporation and 
soil moisture) Earth system functions 
were intended to be implicitly represented 
by the ‘Freshwater use’ PB1,2, which 
focuses solely on blue water. The lack of 
an explicit representation of green water 
in the planetary boundaries framework 
can, therefore, conceal and misrepresent 
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candidates, each with critical importance 
in hydroecological and hydroclimatic 
functions. In considering these variables, 
the definition of green water is broader 
than most others. Indeed, other definitions 
sometimes only comprise terrestrial 
evaporation14 that directly contributes 
towards biomass production (transpiration), 

thereby, excluding the direct and indirect 
role of precipitation and unproductive 
evaporation in regulating ecological  
and climatic processes5,9,15–17. The basis  
of precipitation, evaporation and soil 
moisture as potential control variables  
in a green water PB are now discussed, 
focusing on their control–response 

relationships that modify Earth system 
functioning.

Precipitation control. Precipitation, the 
largest flux in the terrestrial water cycle 
(Fig. 2a) and a strong predictor of soil 
moisture18 and vegetation productivity19, 
exhibits strong green- water control on 

a  Conceptual illustration of a green water planetary boundary

b  Green water relationships that are considered in the control variable selection
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Fig. 1 | The conceptual framework of a green water planetary boundary. 
a | The planetary boundaries framework with its nine boundaries, including 
the proposed renaming of ‘Freshwater use’ as ‘Freshwater change’, subdi-
vided into a blue and a green water sub- boundary. The lower panel illus-
trates the relationship between the degree of human modification of the 
green water planetary boundary (PB) control variable and Earth system 

resilience implications. b | The key relationships (thick grey arrows) consi-
dered in selecting a suitable green water PB control variable. Adding a new 
green water component to the planetary boundaries framework requires 
defining a quantifiable control variable that can signal rising Earth system 
risks caused by anthropogenic green water modifications. Top left 
illustration in panel a is adapted, with permission, from reF.2, AAAS.
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Earth system functioning. Indeed, human 
activities influence precipitation patterns 
at various spatio- temporal scales, motivating 
the use as a green water PB control variable. 
For example, land- use change (such as 
deforestation, irrigation and urbanization20) 
alters precipitation by modifying local 
land–atmosphere coupling, atmospheric 
water balance and large- scale circulation 
patterns, including monsoon dynamics21–25. 
Greenhouse gas and aerosol emissions 
also alter atmospheric water holding 
capacity, cloud formation, circulation and, 
subsequently, the magnitude and spatio- 
temporal variability of precipitation13,26–28. 
Notably, precipitation anomalies are 
projected to increase under anthropogenic 
warming at a range of timescales29–31, 
with potential non- linear impacts on 
hydroecological and hydroclimatic 
functioning (Fig. 2b, Supplementary  
Tables 1 and 2).

From a planetary boundaries perspective, 
the resilience of the Amazon and Congo 
rainforests is critical, as these forests are 
considered tipping elements of the Earth 
system3,10,32. Radical changes in mean annual 
precipitation result in non- linear responses 
in tropical tree cover10,33,34 (Fig. 2b), drought 
deciduousness in tropical forests35, changes 
in tropical tidal- wetland vegetation cover36, 
reduction in evolutionary diversity37 (Fig. 2b) 
and interannual variability of net ecosystem 
carbon exchange38 (Fig. 2b). Moreover, below 
a critical threshold of ~2,000 mm year−1, 
tropical rainforests cannot maintain 
year- round photosynthesis39.

Widespread deterioration of ecological, 
climatic and hydrological Earth system 
functioning is further associated with 
changes in the temporal variability of 
precipitation. Indeed, precipitation 
seasonality in tropical rainforests34, dry 
forests40 and drylands41–43 is a critical, 
persistent and non- linear driver of tree 
cover extent and fire34, functional traits 
diversity44, vegetation productivity45, soil 
moisture and carbon sequestration41, and 
the overall strength of the tropical carbon 
sink46. Severe meteorological droughts in 
semi- arid regions reduce tree growth that 
wet anomalies cannot compensate for47 and 
decrease overall ecosystem production48. 
Increasing extreme precipitation under 
anthropogenic warming can also cause 
soil erosion49, decrease infiltration, decrease 
soil moisture and increase surface runoff49, 
although the implications for flooding risk 
are not straightforward29,50,51.

Precipitation constitutes an important 
candidate to a green water PB control 
variable, based on the strong control it 

a The water cycle over land

b Examples of green-water-controlled non-linear relationships
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exerts on Earth system dynamics. However, 
while human activities clearly influence the 
magnitude and temporal distribution of 
precipitation, the impact pathways are partly 
indirect and occur via changes to terrestrial 
evaporation and soil moisture.

Evaporation control. Terrestrial evaporation 
— the sum of transpiration, soil evaporation 
and interception evaporation14 — offers a 
further option as the green water PB control 
variable, constituting the second largest flow 
in the global water cycle over land (Fig. 2a). 
Like precipitation, human activities also 
impact evaporation, with marked spatial and 
temporal variability. For instance, agriculture 
and pasture expansions covering nearly 
half of the Earth’s ice- free land surfaces are 
associated with both 2,000–3,000 km3 year−1 
decreases and 800–2,600 km3 year−1 
increases in evaporation22,52–54. Moreover, 
anthropogenic forcing is associated with 
higher average terrestrial evaporation rates 
and a higher risk for drought- induced 
decreases in evaporation55. Increased 
atmospheric CO2 concentration can further 
increase, decrease or have a minimal  
effect56 on transpiration, owing to changes  
in vegetation productivity57 and higher 
water- use efficiency58.

Such changes in evaporation mediate 
the energy and water balance of the 
atmosphere and affect regional climate 
and temperature. For example, irrigation 
can delay monsoon onset17, increase 
downwind precipitation22,23,59 and, on 
the hottest days of the year, have a cooling 
effect60,61. However, irrigation- induced 
evaporation can also create humid heatwaves 
beyond human physiological survivability 
limits62,63. In addition, forest- loss- induced 
decreases in dry season evaporation can 
self- amplify forest loss through weakened 
moisture recycling cascades64,65 and increase 
the occurrence of drought by shifting 
precipitation patterns66,67.

Terrestrial evaporation is a strong 
candidate to a green water PB control 
variable based on its direct response 
to human pressures and control on 
hydroclimatic Earth system functions. 
Nevertheless, evaporation primarily 
responds to human impacts on ecological 
dynamics and only indirectly controls 
hydroecological Earth system functions.

Soil moisture control. The green water 
PB control variable could also be based 
on soil moisture, a critical interface 
between all major flows in the water 
cycle (Fig. 2a). Soil moisture retention 
and availability68–70 are impacted by human 

activities both directly through agricultural 
intensification, agricultural expansion 
and urbanization71,72, and indirectly via 
precipitation and evaporation changes73 
induced by anthropogenic climate change74, 
land system change and water use (Fig. 2a).

Soil moisture can be commonly defined 
as surface soil moisture, total soil moisture 
column and root- zone soil moisture, 
particularly in large- scale modelling and 
analyses. Mechanistically, it is root- zone 
soil moisture that is most directly linked 
to transpiration, biomass production 
and soil moisture drought, and, thus, the 
soil moisture definition that could best 
serve as a candidate for a green water 
PB control variable. However, owing 
to the absence of reliable, detailed and 
widespread estimates of root- zone soil 
moisture, proxy indicators are often used 
to assess impacts on hydroecological and 
hydroclimatic functioning. These proxy 
indicators include various combinations 
of precipitation, evaporation, surface soil 
moisture, potential evaporation, temperature 
or radiation, such as the aridity index75 
(the ratio between mean annual potential 
evaporation and precipitation) and a range 
of seasonal water deficit indices44–46,76–78.

Soil moisture change is linked to 
a variety of non- linear responses in 
ecological, biogeochemical, atmospheric 
and hydrological dynamics. For example, 
root- zone soil moisture deficit is a key 
driver of persistent and non- linear 
ecological states. During periods of limited 
or no precipitation, vegetation maintains 
photosynthesis and transpiration by 
accessing moisture from the soil. Below 
a critical threshold of plant- available 
water, vegetation mortality increases, 
particularly in vegetation types without 
alternative drought coping strategies 
(such as dormancy, deciduousness and 
plant water storage), including tropical 
trees79,80. In drylands, transgressing aridity 
index thresholds might be associated with 
vegetation decline, soil disruption and 
systemic breakdown11 (Fig. 2b). However, the 
use of hydroclimatic proxy variables (such 
as the aridity index) to examine ecological 
impact is debated, notably owing to plant 
physiological changes being unaccounted 
for. Furthermore, while some research 
suggests that CO2 fertilization has limited 
to no effect in counteracting the vegetation 
decline81, others outline that greening 
associated with CO2 fertilization is critical in 
the model simulation of future carbon sink82 
and dryland extents83.

Root- zone soil moisture anomalies are 
also key drivers of the land carbon cycle 

via controls on ecosystem productivity. 
Indeed, modifications in soil moisture under 
a high emission scenario risk turning the 
land from a net carbon sink to a carbon 
source by the middle of the century84; with 
increased temperatures, dry soils suppress 
carbon uptake85. Soil moisture content 
below 50% can also trigger abrupt light- use 
efficiency changes, impacting ecosystem 
productivity and carbon uptake86 (Fig. 2b). 
In fact, ample evidence supports the 
critical role of soil moisture for the carbon 
cycle87 across various ecosystem types, 
including temperate grasslands88, semi- arid 
areas89,90, peatlands91,92 and permafrost 
areas93,94. In many such cases, carbon cycle 
dynamics are linked to aridity through soil 
biogeochemical processes (Fig. 2b), including 
pH (reF.95), micronutrient availability96, 
microbial abundance and diversity97, land 
management impact on soil organic carbon 
storage98 and reactive mineral retention99.

Soil moisture deficits can further 
directly affect atmospheric dynamics 
through land–atmosphere interactions and 
resultant energy balance perturbations100. 
Surface soil moisture anomalies have 
non- linear relationships with evaporation 
variability16, temperature extremes101–103, 
local precipitation104 (Fig. 2b) and water 
availability105. Amplifying feedbacks between 
soil moisture deficit, intensified surface 
warming, anticyclonic circulation anomalies 
and heatwaves106 that further exacerbate soil 
drying might lead to abrupt shifts in regional 
climate107. The influence of antecedent soil 
moisture on the probability of subsequent 
precipitation appears to depend on aridity, 
particularly in semi- arid and semi- humid 
regions108.

Moreover, soil moisture is linked to 
non- linear transitions in hydrological states. 
Locally, small changes in soil moisture near 
thresholds, such as wilting point or field 
capacity, can modify evaporation rates 
and deep percolation109. Globally, the aridity 
index is associated with non- linear changes 
in the sensitivity of plant transpiration 
to hydroclimatic change110 (Fig. 2b). Soil 
moisture–precipitation feedback also opens 
up the possibility of two distinct preferential 
states of seasonal soil moisture111. Initial 
spring or early summer soil moisture 
conditions might enable the switch between 
inherently resilient soil moisture states, 
locking the system into those conditions 
over a season111. Stochastic, amplifying 
feedbacks might, thus, cause bimodality 
of soil moisture and transitions between 
different soil moisture states112. Temporary 
soil moisture deficit can also lock watersheds 
into long- term low- flow conditions, 
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potentially owing to adaptive increases of 
root- zone storage capacity that do not easily 
return to pre- drought levels113. The ability  
of soil moisture deficits to induce alternative 
stable states in soil hydraulics is also 
demonstrated experimentally70.

Root- zone soil moisture fulfils two 
of the most important considerations in 
the selection of a green water PB control 
variable: it is directly influenced by 
human pressures and it directly impacts 
a range of large- scale ecological, climatic, 
biogeochemical and hydrological dynamics.

Control variable selection
Precipitation, evaporation and root- zone 
soil moisture are all viable green water 
PB control variables based on their 
biophysical control–response relationships. 
Nevertheless, control variables in the 
planetary boundaries framework further 
need to usefully represent scientific 
knowledge and serve in management 
contexts. To systematically account for  
all these aspects, eight evaluation questions 
(adapted from reFs6,114) were used to 
assess and compare the suitability of 
precipitation, evaporation and soil moisture 
for defining the green water PB (Table 1; 
Supplementary Methods).

Root- zone soil moisture is inherently 
better at representing overall green water 
dynamics (universality) compared with 
precipitation and evaporation (Table 1). 
Indeed, root- zone soil moisture is directly 
affected by changes in precipitation and 
evaporation, and is critical in mediating 
the relationship between the two. It further 
controls transpiration and indirectly affects 
interception storage capacity115,116. Although 
saturated root- zone soil moisture will not 
change in response to precipitation increase 
or evaporation decreases, it is more prone 
to translating precipitation increase into 
runoff increase. In contrast, evaporation 
does not respond to precipitation when 
the atmospheric demand is low, and the 
precipitation response to land and water is 
indirect and contingent on land–atmosphere 
feedback strength. As a result, precipitation 
also scored lower in its representation of 
human perturbation (Table 1).

By definition, root- zone soil moisture 
also outperforms the flow- based variables in 
reflecting the state of the Earth system (state 
representation in Table 1), contributing to 
consistency across the planetary boundaries 
framework. The control variables for most 
of the other quantified boundaries are state 
variables: atmospheric CO2 concentration 
(‘Climate change’), biodiversity intactness 
index (‘Functional diversity’), stratospheric 

O3 concentration (‘Stratospheric ozone 
depletion’), carbonate ion concentration 
(‘Ocean acidification’), area of forested land 
(‘Land system change’) and aerosol optical 
depth (‘Atmospheric aerosol loading’). Flow 
variables have only been employed in the 
planetary boundaries framework where state 
variables have been deemed inappropriate: 
extinction rate (‘Genetic diversity’), 
phosphorus flow and nitrogen fixation 
(‘Biogeochemical flows’) and consumptive 
blue water use (‘Freshwater use’)2.

Moreover, root- zone soil moisture  
(and precipitation) outperform 
evaporation when representing green 
water drivers of non- linear hydroecolo-
gical and hydroclimatic impacts 
(Earth system functioning in Table 1). 
In terms of hydroecological control, 
evaporation- related variables more 
commonly represent responses to — and 
not control of — ecological change. For 
example, transpiration is a by- product of 
photosynthesis, and both interception  
and soil evaporation are influenced by 
vegetation growth117. In the instances  

where evaporative flows can be considered 
to control ecological processes, it is largely 
through their consumptive influence 
on plant- available moisture in the soil16. 
In contrast, water availability in the soil 
directly restricts and asserts control on 
vegetation biomass production and carbon 
dynamics84,118. The distinction is not as 
evident in terms of hydroclimatic control. 
On the one hand, it can be argued that soil 
moisture asserts control of atmospheric 
processes only via evaporation, in which 
case, evaporation constitutes the primary 
control variable. On the other hand, it can 
be argued that evaporation, as latent heat 
flux, is itself a hydroclimatic functioning 
controlled by soil moisture16.

For the three other evaluation  
aspects — Holocene conditions, boundary 
position and parsimony — precipitation, 
evaporation and root- zone soil moisture 
can be considered equally suitable. For 
measurability, precipitation is considered 
most suitable, given the accuracy and 
coverage of various gauge- based, radar- 
based and satellite- based precipitation 

Table 1 | Qualitative evaluationa of the suitability of green water flows and stocks  
as a planetary boundary control variable

Question Precipitation Evaporation Root- zone 
soil moisture

Scientific evidence and biophysical representationb

Human perturbation: is the green water variable 
a robust and comprehensive indicator of 
anthropogenic perturbation on green water 
processes?

+ +++ +++

Earth system functioning: can changes in the 
green water variable contribute towards a 
non- linear change in the functioning of the  
Earth system within an ‘ethical time horizon’?

+++ ++ +++

Holocene- like conditions: can the Holocene- like 
conditions of the green water variable be defined 
and estimated?

++ ++ ++

Boundary position: can a boundary position be 
robustly defined for the green water variable 
based on knowledge of the system dynamics?

++ ++ ++

Universality: is the green water variable able 
to directly or indirectly represent all relevant 
components and dynamics of green water?

+ ++ +++

State representation: does the green water 
variable represent a state of the Earth system?

+ ++ +++

Usefulness for management

Measurability: can the status of the green water 
control variable be measured, tracked in time and 
monitored?

+++ ++ ++

Parsimony: does the green water variable 
minimize overlaps and redundancy with other 
planetary boundaries?

++ ++ ++

Overall evaluation results and total scoresc 15 17 20
aConsensus- based assessment performed by the authors (Supplementary Methods). bResponses to each 
question answered as: +, ‘yes, to a limited extent’; ++, ‘yes, to a large extent’; +++, ‘yes, to a satisfactory 
extent’. cTotal score determined as the total number of ‘+’.

384 | June 2022 | volume 3 www.nature.com/natrevearthenviron

P e r s P e c t i v e s



0123456789();: 

measurements119. Based on the consideration 
of all evaluation criteria, root- zone soil 
moisture outperforms precipitation and 
evaporation, and is, thus, the most suitable 
control variable of a green water PB (Table 1).

Green water planetary boundary
While a green water PB control variable 
based on root- zone soil moisture can 
be proposed according to the published 
literature and variable evaluation, a more 
precise definition is required to determine 
the boundary position and its current status, 
as are now discussed.

Control variable formulation. We propose 
the following formulation of a green water 
PB control variable: the percentage of 
ice- free land area on which root- zone soil 
moisture anomalies exit the local bounds 
of baseline variability in any month of the 
year. This specific definition offers many 
advantages. First, this direct measure of 
the root- zone soil moisture state better 
represents ecological responses, such as 
stomatal conductance and vegetation growth 
response to rising CO2 concentrations120,121, 
compared with popular proxies, such as the 
aridity index. Second, a land- area- based 
measure is preferred over a water- volume- 
based measure, which can mask the spatial 
heterogeneity of water cycle dynamics by 
disproportionately discounting hydrological 
changes in arid regions5,6. Such a land- 
area- based metric has also been proposed 
to replace the current water- flow- based 
blue water PB (reF.6). Third, a monthly 
scale overcomes issues associated with sub- 
monthly scales (which are below the scale 
of agricultural and ecological droughts122,123) 
and annual scales (which can potentially 
average out and, thereby, conceal ecological 
impacts from dry and wet extremes at 
seasonal scales124). Last, a percentile- based 
formulation removes outliers, and the 
use of upper and lower bounds accounts 
for both wet and dry departures from 
baseline. In this case, these local bounds are 
defined as the 5th and 95th percentiles of 
root- zone soil moisture for a given month 
for all years within the baseline period 
(Supplementary Methods).

Baseline departure. Within the planetary 
boundaries framework, boundary 
positions and transgressions of control 
variables are quantitatively assessed in 
relation to a baseline period, preferably 
the Holocene. However, given that there 
are no publicly available data on root- 
zone soil moisture covering the whole 
11,700- year Holocene, mid- Holocene 

(500 years beginning ~6,000 years ago) 
and pre- industrial (1850–1899) periods can 
provisionally be considered the baseline. 
Since the global baseline departure is based 
on the percentage of land area that exits 
local bounds of root- zone soil moisture 
variations, deviations are considered at both 
the local and the global scales. Exit from 
local bounds occurs when root- zone soil 
moisture variations are beyond the 5th and 
95th percentiles for a given month during 
the baseline; local bounds are based on 
an area of the considered grid cell (0.5°) 
and its neighbours. Departures from the 
global baseline occur where percentage 
variations in land area that exit wet or dry 
local bounds are beyond the 95th percentile 
lowest variations for a given month during 
the baseline. A fraction of ice- free land 
area exiting local bounds can be expected 
within these baseline periods, since the local 
bounds are defined by percentiles rather 
than the maximum and minimum monthly 
root- zone soil moisture.

Using these definitions and baselines, 
the extent of baseline departure of the green 
water PB is assessed. Root- zone soil moisture 
data are obtained from MPI- ESM1.2- LR 
(reFs125,126) and simulated using the dynamic 
vegetation model LPJmL5.1 forced with 
data from CMIP6 (Supplementary Data, 
Supplementary Table 3). Pre- industrial 
baseline departures are analysed over 
1900–2014 and mid- Holocene baseline 
departures over 1850–2014.

These preliminary analyses indicate  
that the green water PB control variable 
has departed from the variability envelope 
of the pre- industrial baseline (Fig. 3). 
Permanent departures, where the time 
series of the percentage of land area 
exiting local bounds do not fall within 
the variability envelope by the end of the 
time series by 2014, occurred across all 
model outputs. Indeed, both wet and 
dry departures from the pre- industrial 
baseline have steadily increased between 
1900 and 2014, with permanent wet 
departures occurring from the 1980s and 
permanent dry departures from the 1920s 
(LPJmL5.1) or 1980s (MPI- ESM1.2- LR). 
There is also a possibility of departures 
from the mid- Holocene baseline (Fig. 3). 
Specifically, a permanent wet departure is 
simulated from the 1920s. In contrast, dry 
departures from the mid- Holocene are 
substantial and permanent, but relatively 
stable over 1850–2014.

These findings should be cautiously 
interpreted. For instance, neither the pre- 
industrial nor the mid- Holocene baselines 
can be claimed to be representa tive of the 

entire Holocene period. The pre- industrial 
period is extremely short in a palaeoclimatic 
perspective and already considerably 
impacted by human land system change127,128. 
The mid- Holocene was also wetter than 
most other periods during the Holocene, 
with land precipitation over a large area, 
particularly in the tropics, appearing to have 
declined since129. Moreover, many important 
control–response relationships are not 
represented by the models. For example, 
rooting depth was fixed in both land 
surface model simulations and LPJmL5.1 
simulations were not dynamically coupled 
to represent land–atmosphere feedback. 
Mid- Holocene model outputs were also only 
available for a single simulation from a single 
Earth system model (MPI- ESM1.2- LR) and 
should, thus, be considered highly uncertain 
(Supplementary Data).

Earth system resilience. Boundary positions 
in the planetary boundaries framework 
are determined based on the assessed 
self- regulatory biophysical capacity of the 
Earth system to remain in Holocene- like 
conditions (Earth system resilience)2,114. 
Thus, while the degree of baseline departure 
provides a reference point (Fig. 3), the 
boundary position of the green water 
PB can only be set by taking into account the 
overall Earth system resilience. High Earth 
system resilience suggests that the boundary 
can be positioned beyond the baseline 
departure level, assuming that the Earth 
system can recover from a temporary 
pressure on green water. Conversely, low 
Earth system resilience suggests that the 
boundary needs to be set below the baseline 
departure level. In this instance, Earth 
system resilience is considered high if no 
other planetary boundaries are transgressed 
and/or stabilizing feedbacks dominate 
over amplifying feedbacks, or low if other 
planetary boundaries are transgressed  
and/or amplifying feedbacks dominate.

On this basis, the self- regulatory 
capacity of the Earth system to absorb 
human- induced green- water perturbations 
might be considered compromised. 
Specifically, at least five of the nine  
planetary boundaries are presently 
considered transgressed: the core 
boundaries ‘Climate change’ and ‘Biosphere 
integrity’, as well as ‘Land system change’, 
‘Biogeochemical flows’2 and ‘Novel 
entities’130. The ‘Freshwater use’ PB is also 
potentially transgressed4,131,132. Furthermore, 
interactions and interdependencies among 
planetary boundaries amplify human  
impact and shrink the planetary safe 
operating space133.
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The other criteria for low Earth 
system resilience, the dominance of 
amplifying feedbacks, also points towards 
a compromised green water PB (Fig. 4). 
For instance, there are suggestions that 
the stabilizing CO2 fertilization feedback 
is weakening134, potentially because of 
limitations in nutrient and soil moisture 
availability87,134,135; however, these findings 
are debated136–139. Observation- based 
analyses further suggest that carbon 
uptake peaked in the Amazon rainforest 
in the 1990s, and more recently in the 
African tropical forests46. In the boreal 
forests, the carbon sink appears to be still 
increasing140,141, although observed increases 
in water- use efficiency might not translate 
to stem growth and increase in carbon 
sequestration142. In drylands, amplifying 
feedbacks are increasing: climate change 
and degradation trigger vicious cycles4,143 
of infiltration capacity loss69, decrease in 
soil moisture and moisture recycling144,145, 
and loss in biodiversity146, although soil 
moisture–atmosphere feedbacks might 
help mitigate some of the declining water 
availability in drylands105,147. In permafrost 
regions, carbon feedbacks are amplifying, 
with the hydrological cycle having a complex 

role148. Soil moisture saturation risks 
accelerating thawing, creating anaerobic 
conditions and methane emissions93, 
although further progress in permafrost 
thawing might decrease or, ultimately, 
even offset and counter any intensification 
in the Arctic hydrologic cycle149. In 
peatlands, drying can be associated with 
shrubification and CO2 emissions, which 
are more long- lived than methane release 
from waterlogged conditions91,92. Owing to 
highly complex ecohydrological dynamics 
and multifactor interactions, substantial 
uncertainty persists concerning the overall 
land carbon cycle feedback under global 
warming150–152.

Boundary transgression. Conceptually, 
boundary transgression can be determined 
under three scenarios of Earth system 
resilience (Fig. 5). In a first scenario, Earth 
system resilience is not considered and/or 
neutral (amplifying and stabilizing feedbacks 
are in balance), and a baseline departure 
can, thereby, be interpreted as a boundary 
transgression. This scenario is aligned 
with the original method for proposing 
individual boundary positions114, which 
assumes that no other boundaries are 

transgressed. This interpretation would 
imply a transgressed green water PB (top bar 
in Fig. 5), since the current status (~18% of 
land area exiting wet and dry local bounds) 
of the green water PB control variable is 
slightly beyond the mid- Holocene baseline 
departure level (~13% of land area exiting 
local bounds) (Fig. 3).

In a second scenario, the Earth system 
is assumed to have a high resilience (other 
planetary boundaries are not transgressed 
and stabilizing feedbacks dominate) and the 
capacity to absorb temporary perturbations, 
thereby, allowing a boundary position to 
be placed above the baseline departure level 
(middle bar in Fig. 5). With a sufficiently 
high Earth system resilience, the current 
status of the green water PB control variable 
could be considered safe.

In our present situation, however, Earth 
system resilience is compromised (other 
planetary boundaries are transgressed and 
amplifying feedbacks dominate) and a safe 
distance to baseline departures needs to be 
kept based on the precautionary principle 
(bottom bar in Fig. 5). Thus, the boundary 
position is set below the baseline departure 
level. The boundary position of the green 
water PB can be provisionally considered 
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Fig. 3 | Departure from the envelope of baseline variability. Percentage 
of land area with monthly root- zone soil moisture deviations beyond local 
lower (dry departure) and upper (wet departure) bounds. Dry and wet 
bounds are defined as the 5th and 95th percentiles of root- zone soil  
moisture over the mid- Holocene (500 years from ~6,000 years ago) and 
pre-industrial (1850–1899) baseline periods, respectively (Supplementary 
Methods), using data from the Earth system model MPI- ESM1.2- LR 
(reFs125,126) (purple and brown lines) and the global vegetation and water 

balance model LPJmL (reF.200) (yellow lines; Supplementary Data). 
Pre- industrial baseline departures were considered for the historical period 
(1900–2014) and mid- Holocene baseline departures for the entire historical 
period (1850–2014), as transient root- zone soil moisture data are unavail-
able over the entire Holocene. Simulations of the proposed green water 
planetary boundary (PB) control variable have, thus, already departed from 
the variability envelope (5th and 95th percentiles) of both the pre- industrial 
and the mid- Holocene baseline.
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at ~10% of the land area in which root- zone 
soil moisture is wetter or drier than the 
local variability bounds. In the absence 
of data over the entire Holocene period 
(the preferred baseline period in the 
planetary boundaries framework), this 
proposed boundary position corresponds 
to the median of mid- Holocene local 
bound exits. Since ~18% of land area 
currently exits local bounds, the green 
water PB is considered to be considerably 
transgressed. This assessment is further 
motivated by the overall increasing trend 
of human influence on green water153 and 
the fact that green water modifications are 
likely to progress further before any trend 
reversals can be observed due to inertia in 
the Earth system154.

Taken together, a quantifiable and 
transgressed green water PB emerges: 
model outputs of unprecedented areas 
with root- zone soil moisture anomalies 
already indicate a departure from baseline, 
and worrying signs of a low Earth system 
resilience could further motivate a 
precautionary placement of the boundary 
position well below the baseline departure 

level. Green water modifications are now 
causing rising Earth system risks at a scale 
that modern civilizations might not have 
ever faced.

Interpretation and application
The current extent of green- water 
perturbations is inadequately addressed 
in global governance155. Mitigating green 
water PB transgressions thus requires 
globally coordinated policy attention. The 
green water PB can meet this requirement, 
acting as an integral part of the planetary 
boundaries framework that contributes 
to Earth system governance through 
regulatory (formal regulations, laws and 
treaties), procedural (such as forums for 
negotiations), generative (such as reframing 
the discourse narrative) and programmatic 
(such as programmes to meet international 
targets) functions in governance, business 
and civil society settings156,157. Moreover, 
a green water PB can highlight the need 
to address threats to green water and 
the soil158 in a range of international 
sustainability policies and treaties, including 
the Sustainable Development Goals, the 

Convention on Biological Diversity and the 
Paris Agreement.

A green water PB complements other 
planetary boundaries by shedding light 
on underlying Earth system resilience. 
For example, complementary to the 
‘Land system change’ PB, decreasing 
green water availability can indicate loss 
in forest resilience prior to abrupt forest–
savannah shifts10. In addition, a green 
water PB complements a blue- water- based 
PB by reflecting the negative impacts 
of deforestation on the water cycle, even 
where such changes result in increases 
in river flows8,22. A green water PB can 
further account for functional restoration 
in human- dominated landscapes, 
achieved through, for example, rainwater 
harvesting159, soil erosion prevention160, 
peatland water management161 and other 
sustainable land management practices.

As with the rest of the planetary 
boundaries framework, the green 
water PB is not designed to be spatially 
disaggregated2 and directly operationalized. 
Operationalization requires articulating 
concrete policy targets and management 
approaches at a sectoral, national, city 
or business level (downscaling through 
fair share or local safe operating space 
approaches)162–166. A direct application 
to the local scale is complicated by a 
boundary- setting rationale based on 
continental- to- planetary system resilience 
considerations, and because the drivers of 
green water change involve interactions with 
a variety of human pressures. Downscaling 
approaches must harmonize cross- scale 
conflicts and leverage cross- scale synergies 
sensibly and intelligently for the highly 
spatially heterogeneous green water PB. 
In areas with strong moisture recycling, 
disproportionate impact of soil moisture 
change on downwind water cycle can be 
accounted for using data of evaporation 
recycling141,167 (defined as the fraction 
of terrestrial evaporation that returns 
as terrestrial precipitation)168. Using the 
green water PB to motivate practices and 
interventions that would otherwise be 
considered unsustainable and harmful 
to people and nature is not advised.

A green water PB also complements 
other green water management metrics169 
by proposing a ceiling to human green water 
modifications and accounting for green 
water’s role in supporting the Earth system 
to remain in Holocene- like conditions. 
Existing green water concepts and metrics169 
are typically concerned with human nature 
allocation (such as green water footprint 
and virtual water) or direct crop yield  
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impacts at local spatial scales and short 
timescales (such as drought indices). In 
contrast, the green water PB can help inform 
governance actors on green water’s role 
for large- scale and long- term resilience. For 
example, the Earth system perspective can 
highlight the role of the time delay in peak 
carbon emissions due to hysteresis effects10 
and the role of various climate mitigation 
measures for green- water- mediated Earth 
system impacts (such as afforestation and 
biomass plantations170). Beyond serving as a 
diagnostic metric, the green water PB points 
at the need for integrative research on how 
land, water and climate governance policies 
affect overall Earth system functioning.

A transgressed green water PB 
implies increased Earth system risks, 
but green water impacts on societies will 
also depend on factors that are beyond 
the scope of the planetary boundaries 
framework. An optimistic view might be 
that technological advances enable modern 
societies to address unprecedented water 
variability and environmental challenges171. 
This argument would suggest that the 
boundary position proposed here is too 
conservative concerning societal impacts, 
although changing the boundary position 
would violate the precautionary principle. 
Conversely, historical research of social 
collapse illustrate that environmental 
challenges, such as hydroclimatic shifts 
towards drier conditions, could trigger 
societies to grow more complex, with 
the outcome depending on a society’s 
position along a trajectory of increasing 
complexity and diminishing returns on 
further investments in complexity172. This 
line of argument would suggest that water 
variability in the Holocene that sustained 
former societies might not sustain modern, 
complex and interdependent societies. An 
application of this view could suggest that 
societies set more stringent limits to green 
water modification than proposed here.

Summary and future perspectives
Within the planetary boundaries framework, 
freshwater — the bloodstream of the 
biosphere173 — has only been implicitly 
considered through the ‘Freshwater use’ PB. 
However, an explicit articulation of green 
water is required to better represent the full 
extent and diversity of human pressures 
on the water cycle. The ‘Freshwater use’ 
PB should, thus, be renamed as ‘Freshwater 
change’, divided into a blue and a green 
water sub- boundary. The green water 
sub- boundary can be represented by a 
control variable based on root- zone soil 
moisture, specifically, the percentage of 

ice- free land area on which root- zone soil 
moisture anomalies exit the local bounds 
of Holocene variability in any month of the 
year. Given the current extent of root- zone 
soil moisture departures from mid- Holocene 
and pre- industrial baselines, as well as 
widespread deteriorations in Earth system 
resilience, there are indications that a green 
water PB might already be transgressed; 
human interference with green water 
has now reached an extent that increases 
the risk of large- scale non- linear change 
and compromises the capacity of the 
Earth system to remain in Holocene- like 
conditions. The current global trends 
and trajectories of increasing water use, 
deforestation, land degradation, soil erosion, 
atmospheric pollution and climate change 
need to be promptly halted and reversed to 
increase the chances of remaining in the safe 
operating space.

Future research now needs to increase 
the robustness of the green water PB control 
variable quantification, and understand the 
risks for and the dynamics through which 
green- water perturbations can disrupt Earth 
system resilience.

How can reliable quantifications of 
past and present root- zone soil moisture 
be achieved? Despite the fundamental 
importance of root- zone soil moisture for 
terrestrial ecosystems and hydroclimatic 

processes, its state and dynamics have 
hitherto been relatively sparsely modelled, 
measured and considered. The Global 
Observing Systems Information Center 
recognizes soil moisture as one of fifty 
Essential Climate Variables since 2010 
(reF.174). However, in contrast to surface 
soil moisture, limited attention has been 
directed towards root- zone soil moisture175, 
as reflected in the variable seldom being 
provided as a model output176. Such 
uncertainties in model representation 
of plant water limitations across Earth 
system models translate into large 
uncertainties in terrestrial carbon cycle 
simulations, comparable with global 
primary production177. Fortunately, 
there are promising signs that better 
understanding of root- zone soil moisture 
can be reached. Reconstructions can 
potentially be improved based on progress 
in global- scale palaeoclimatic research178,179 
and within the Paleoclimate Modelling 
Intercomparison Project180. Opportunities 
for improved estimates of present- day 
root- zone soil moisture are also increasing, 
owing to a rise in available data that can 
be used for inference, including field 
measurements181,182 and satellite- based 
observations of surface soil moisture, 
precipitation, total water storage, other 
hydrologically relevant variables and 
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various vegetation characteristics175,183–188. 
Nevertheless, direct measurements of 
plant water access are still severely lacking, 
especially in areas with high importance 
for green water Earth system functioning, 
including tropical rainforests and drylands. 
Moreover, root- zone soil moisture’s critical 
role in regulating ecological, hydrological, 
biogeochemical and climatic dynamics 
strongly motivates its inclusion among 
standard outputs in continuation of existing 
Model Intercomparison Projects.

What are the risks for human- driven 
green water modifications to contribute 
to crossing irreversible, near- future 
continental- to- planetary- scale tipping 
points? Understanding regime shift risks 
requires a good understanding of green- 
water-related interactions and feedbacks. 
Nevertheless, research on regime shifts and 
biome resilience frequently rely on proxy 
variables to represent plant water stress 
limitations, thereby, ignoring dynamic 
responses and evolutionary changes in 
water- use efficiency56,142, light- use efficiency86, 
plant groundwater access187, plant bedrock 
water access189, infiltration190 and rooting 
depth186,191,192. The availability and simplicity 
of the aridity index and other proxy variables 
explain their popularity. However, their 
limitations should be overcome by improved, 
open data sharing principles193 in order 
to facilitate collaboration across the Earth 
system sciences. Collaborative research on 
Earth system resilience, such as the Tipping 
Element Model Intercomparison Project, 
also has the potential to provide important 
insights in tipping risks and pathways 
associated with green water modifications.

Finally, research is needed for 
understanding how management and 
governance can account for the multiple 
roles of green water, both as an ecosystem 
service provider and a highly complex 
and dynamic Earth system function. 
The planetary boundaries framework has 
already triggered extensive discussions that 
challenged global paradigms on economic 
growth, legal national sovereignty and 
anthropocentrism194. As such, setting a 
global boundary to green water interference 
can be considered an act of governance in 
itself158, and its political, economic, social 
and ethical implications will require further 
consideration194–197.

Data availability
The LPJmL model outputs and data in Fig. 3 
can be accessed at https://doi.org/10.5281/
zenodo.6339619. The MPI- ESM1.2- LR data 
can be downloaded at https://esgf- node.llnl.
gov/projects/cmip6/.
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