UNIVERSIDAD PARA LA COOPERACION INTERNACIONAL

(UCI)

PROJECT MANAGEMENT PLAN FOR LANDFILL GAS MANAGEMENT PROJECT AT HAAGS BOSCH SANITARY LANDFILL, GUYANA, SOUTH AMERICA

SAMUEL LINDEN HOLDER

FINAL GRADUATION PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE

MASTER IN PROJECT MANAGEMENT (MPM) DEGREE

Georgetown, Guyana

June 2024

1

UNIVERSIDAD PARA LA COOPERACION INTERNACIONAL (UCI)

This Final Graduation Project was approved by the University as

partial fulfillment of the requirements to opt for the

Master in Project Management (MPM) Degree

Evelyn Hernández Rojas TUTOR

Rubén Dario Alzate Mora REVIEWER No.1

> Osvaldo Martinez REVIEWER No.2

2 stulde

Samuel Linden Holder STUDENT

DEDICATION

This research project is dedicated to my parents, daughter, brothers, sister and friends for always pushing me to the next level. I thank you all for your support, encouragement and understanding throughout this master's degree journey.

ACKNOWLEDGMENTS

First, I would like to thank God for blessing me with health and strength throughout this process. Also, I wish to acknowledge the contributions and assistance made by some persons without whose help; this Final Graduation Project would not have been successfully completed.

Secondly, I would like to thank Mr. Gordon Gilkes, Solid Waste Advisor to the Ministry of Local Government and Regional Development, who provided critical information and insight in the field of study which contributed to the successful completion of this project.

Thirdly, I would like to thank the team at UCI for their unwavering support through my studies. They have provided critical feedback and guidance and professional support/knowledge in the field of project management.

I also wish to thank all the other academics who provided leadership and willingly provided their knowledge in the field of project management. They mean so much to me. I entered raw, with minimal knowledge and skills in project management, and I am going out fully knowledgeable and advanced in this unique field of study.

ABSTRACT

The objective of this Final Graduation Project was to develop a project management plan for the Construction of a gas management Facility at Haags Bosch Sanitary Landfill to mintage the migration of landfill gases. These landfill gases are a nuisance to residents in neighboring communities due to its odor which not only has an effect on human health but also is a significant contributor to climate change if not treated before release into the atmosphere. The gas management facility project was the first of its kind in Guyana and will further be constructed to other established sanitary landfill sites that meets the criteria around the country.

The final product of this project was the project management plan which is comprised of a project charter and a subsidiary management plan for each of the nine knowledge areas described in the Project Management Body of Knowledge Guide 7th Edition. These are: scope management plan, schedule management plan, cost management plan, quality management plan, resources management plan and stakeholders' management plan. These plans were used as a framework to guide the gas management project to mitigate the migration of landfill gases from the Haags Bosch Sanitary landfill. The methodologies used for the development of this project was the qualitative method with a bottom-up approach to collect data from local and community stakeholders. In addition, quantitative methods were applied in analyzing data from private organizations and government stakeholders in a top-down approach.

As a result, this project management plan was developed in accordance with the guidelines provided by the PMBOK Guide 7th edition and should be used as a baseline for the construction, implementation, monitoring and controlling processes of the gas management facility to efficiently manage the Project. Further, it is recommended that MLGRD uses this plan as a guide for not only this project but for the development of future developmental works within the various arms of the Ministry.

INDEX OF CONTENTS

DEL	DICATI	ON3
ACK	KNOWI	LEDGMENTS4
ABS	STRAC'	Т5
IND	EX OF	CONTENTS
IND	EX OF	FIGURES9
IND	EX OF	CHARTS
ABE	BREVIA	ATIONS AND ACRONYMS12
EXE	ECUTIV	/E SUMMARY13
1	INTRO	DDUCTION15
	1.1.	Background15
	1.2.	Statement of the problem
	1.3.	Purpose16
	1.4.	General objective
	1.5.	Specific objectives
2	THEO	RETICAL FRAMEWORK18
	2.1	Company/Enterprise framework
	2.2	Project Management concepts
	2.3	Other applicable theory/concepts related to the project topic and context 30
3	METH	ODOLOGICAL FRAMEWORK
	3.1	Information sources

Research methods	
Tools	
Assumptions and constraints	40

7

	3.3	Tools			
	3.4	Assumptions and constraints			
	3.5	Deliverables			
4	RESU	LTS			
	4.1	Project Chárter			
	4.2	Scope Management Plan			
	4.3.	Schedule Management Plan62			
	4.4.	Cost Management Plan67			
	4.5	Quality Management Plan74			
	4.6	Resource Management Plan			
	4.7	Communication Management Plan90			
	4.8	Risk Management Plan94			
	4.9	Procurement Management Plan101			
	4.10	Stakeholder Management Plan104			
5	CONC	CLUSIONS			
6	RECOMMENDATION				
7	VALIDATION OF THE FGP IN THE FIELD OF REGENERATIVE AND				
SUSTAINABLE DEVELOPMENT111					
BIBLIOGRAPHY112					
API	APPENDICES				
A	ppendi	x 1: FGP Charter116			

3.2

Appendix 2: FGP WBS	
Appendix 3: FGP Schedule	127
Appendix 4: Critical Path	128
Appendix 5: Preliminary bibliographical research	129
Appendix 6: Philologist Review Report	

INDEX OF FIGURES

Figure 1 Organizational Structure (Source: Compiled by the Author, S. Holder, 2023)2	1
Figure 2. Project Management Process Group and Knowledge Area Mapping2	.8
Figure 3 Generic Project lifecycle	9
Figure 4 Haags Bosch Gas Management Project lifecycle (Source: Compiled by the Author	r,
S. Holder, 2023)2	9
Figure 5: Work Breakdown Structure (Source: S. Holder, 2024)5	6
Figure 6: Project Schedule (Source: S. Holder, 2023)6	4
Figure 7 Critical Path (Source: Compiled by the Author, S. Holder, 2024)6	5
Figure 8 Project (Source: S. Holder 2024)7	2
Figure 9 Project Team Organizational Structure (Source: S. Holder 2024)	6
Figure 10 Project Hiring Flow Chart (Source: S. Holder 2024)	9
Figure 11 Project Risk Breakdown Structure (Source: S. Holder 2024)9	6
Figure 12 Probability Impact Matrix (Source: S. Holder 2024)9	8
Figure 13: Stakeholder Power/Interest Matrix (Source: S. Holder 2024)Figure 15: St 10	4

INDEX OF CHARTS

Chart 1: Information Sources (Source S. Holder, The Author, February 2023)32
Chart 2: Research Methods (Source S. Holder, The Author, February 2023)
Chart 3: Tools (Source S. Holder, The Author, February 2023)
Chart 4: Assumptions and Constraints (Source S. Holder, The Author, February 2023)41
Chart 5: Deliverables (Source S. Holder, The Author, February 2023)43
Chart 6 Project Milestones (Source S. Holder, The Author, February 2023)49
Chart 7 Methodological framework (Source S. Holder, The Author, February 2023)51
Chart 8 Requirements Traceability Matrix (Source: S. Holder, 2024)53
Chart 9 WBD Dictionary (Source: S. Holder, 2024)57
Chart 10 Roles and Responsibilities (Source: S. Holder, 2024)
Chart 11 Scope Verification and Control Template (Source: S. Holder, 2024)61
Chart 11 Activity list (Source: S. Holder, 2024)63
Chart 12: Cost Estimates (Source: S. Holder, 2024)
Chart 13: Cost Variance Response Process (Source: S. Holder, 2024)73
Chart 14: Stakeholder Prioritization (Source: S. Holder 2024)75
Chart 15: Government of Guyana Requirement Prioritization (Source: S. Holder 2024)76
Chart 16: Ministry of Local Government and Regional Development Requirement
Prioritization (Source: S. Holder 2024)77
Chart 17: Residents Requirement Prioritization (Source: S. Holder 2024)77
Chart 18: Haags Bosch Sanitary Landfill Requirement Prioritization (Source: S. Holder
2024)

Chart 19: Contractors Requirement Prioritization (Source: S. Holder 2024)78
Chart 20: Stakeholder-Weighted Requirement Prioritization (Source: S. Holder 2024) 79
Chart 21: Project Quality Roles and Responsibilities (Source: S. Holder 2024)80
Chart 22: Key Factors Related to Quality (Source: S. Holder 2024)80
Chart 23: Metrics Quality and Baseline Quality (Source: S. Holder 2024)81
Chart 24: Quality Activity Matrix (Source: S. Holder 2024)
Chart 25: Continuous Improvement Chart (Source: S. Holder 2024)
Chart 26 Project Resource Management Roles and Responsibilities (Source: S. Holder
2024)
Chart 27 Responsibility Assignment Matrix (Source: S. Holder 2024)
Chart 28: Reward and Recognition (Source: S. Holder 2024)90
Chart 29: Communication Matrix (Source: S. Holder 2024)91
Chart 30: Escalation Chart (Source: S. Holder 2024)
Chart 31: Communication Matrix (Source: S. Holder 2024)94
Chart 32: Project Risk Roles and Responsibilities (Source: S. Holder 2024)95
Chart 34 Risk Register (Source: S. Holder, 2024)99
Chart 35: Stakeholder Register (Source: S. Holder, 2024)Chart 32 Risk Register (Source: S.
Holder, 2024)
Chart 36 Bill of Materials (Source: S. Holder, 2024)102

ABBREVIATIONS AND ACRONYMS

- CESC Cohesive, Empowered and Sustainable Communities
- CHPA Central Housing and Planning Authority
- EPA Environmental Protection Agency
- FGP Final Graduation Project
- GHG Greenhouse Gas
- HBSL Haags Bosch Sanitary Landfill
- LFG Landfill Gas
- MLGRD Ministry of Local Government and Regional Development
- NDC Neighborhood Democratic Council
- PMBOK Project Management Body of Knowledge
- PMI Project Management Institute
- PMO Project Management Office
- UCI Universidad para la Cooperación Internacional
- WBS Work Breakdown Structure
- GOG Government of Guyana

EXECUTIVE SUMMARY

Haags Bosch Sanitary landfill was developed in February 2011 with the aim of providing a sustainable solution to the solid waste collection and disposal problems in communities along the east bank, west bank, west coast and Georgetown. To date, the increase of garbage influx has increased significantly due to development in all sectors seeing the closure of cell one and the development and usage of a second cell to accommodate the increase influx of garbage.

The initial development of the landfill was done in accordance with specifications outlined by the Environmental Protection Agency (EPA), considering buffers, waterways etc. However, due to the rapid development in the housing industry through central housing and planning authority CHPA, these lands have been developed into various community consisting of approximately 1000 household which are now being affected by odors emitting from the landfill.

At the Ministry of Local Government and Regional Development (MLGRD) execute a wide range of projects through the ministry directly and indirectly. While the various arms of the ministry with established departments which may function as a Project management office PMO, many of its engineers/overseers/staff that manage these projects have little to no project management knowledge. Most of these projects have been executed without the development of a project management plan. As such, projects have been faced with schedule delays and changes to the scope of work.

The intended purpose of the development of this document is for this project management plan to serve as a guide to project managers to aid in the delivery of high-quality projects according to the standards outlined by PMI. The document will consist of a project charter and subsidiary management plans, incorporating all knowledge areas outlined in the PMBOK guide.

The general objective of this FGP was to develop a Project Management Plan, according to the standards outlined by the Project Management Institute (PMI), to manage the design/construction/implementation of a Landfill Gas Management Facility at Haags Bosch Sanitary Landfill, Guyana, South America. The eleven specific objectives were: to develop a Project Charter to present the Final Graduation Project (FGP), to create a sustainable scope management plan to establish the project deliverables, to prepare a schedule management plan to ensure completion of the project within a realistic and agreed duration, to generate a cost management plan to ensure efficient use of project Budget, to produce a quality management plan to define the quality standards specified by stakeholders, to prepare a resource management plan to ensure the required resources are available at the right time, to develop a communications management plan to identify the project's communication strategy based on stakeholder needs, to produce a risk management plan to determine the project's risk strategy and risk identification approach, to create a procurement management plan to identify the goods and services that must be acquired to achieve the project deliverables, to generate a stakeholder engagement plan to identify the project stakeholders and define the approach to engage them effectively in project decisions and activities and to mitigate the emission of landfill gas (LFG) into the environment through the successful completion of the project.

The research methodology for this project was done by using both qualitative and quantitative methods. The sources will include the use of observations, interviews, meeting proceedings, books, and internet sources, and the findings will be analyzed presented using templates approved by the UCI.

It was concluded that the Project Charter provided a detailed Statement of the Scope for the project. A Scope Management plan guided the project team in terms of the necessary parameters regarding the project execution. The Schedule Management Plan was developed to guide the project team in the prioritization of task based on importance and urgency in a sequential order. The Cost Management Plan was created to assist the project team to ensure project expenditure remain within budget and remaining in the said budget. The Quality Management Plan was developed to set expectations in terms of quality. The Resource Management Plan was developed to identify and assign the necessary resources and to track its efficiency. The Communication Management Plan was created to guide the project team in various ways to disseminate the proper information in timely manner. The Risk Management Plan was developed to identify potential risk factors that may occur during the project and ways to mitigate its effects. The Procurement Management Plan was developed to issue contractual works for the procuring of sustainable goods and services. The Stakeholder's Management Plan was created to identify stakeholders and effectively engage them throughout the project life cycle.

Recommendation is being made for all Management Plan as stated above are utilized since they offer a wealth of knowledge and guidance to the project team in the areas of processes to be conducted for the implementation, monitoring and evaluation of projects. Every project manager should be acquainted with the project management processes, resulting in a higher rate of project success within the Ministry of Local Government and Regional Development.

1 INTRODUCTION

1.1. Background

Haags Bosch Sanitary landfill was developed in February 2011 with the aim of providing a sustainable solution to the solid waste collection and disposal problems in communities along the east bank, west bank, west coast and Georgetown. To date, the increase of garbage influx has increased significantly due to development in all sectors seeing the closure of cell one and the development and usage of a second cell to accommodate the increase influx of garbage.

The initial development of the landfill was done in accordance with specifications outlined by the Environmental Protection Agency (EPA), considering buffers, waterways etc. However, due to the rapid development in the housing industry through central housing and planning authority CHPA, these lands have been developed into various community consisting of approximately 1000 household which are now being affected by odors emitting from the landfill.

The steady complains of discomfort by residents living around the landfill has become a major concern to the Government of Guyana since this can lead to negative health conditions and environmental effects. The migration of landfill Gases continue to be a major challenge at Haags Sanitary Landfill (HBSL), this project seeks to mitigate the migration of landfill gases into the atmosphere. Hence, reducing odors that affect residents in and around the landfill site, also mitigate the harmful emissions of greenhouse gases into the atmosphere which contributes to climate change.

1.2. Statement of the problem

At the Ministry of Local Government and Regional Development (MLGRD) execute a wide range of projects through the ministry directly and indirectly. While the various arms of the ministry with establish departments which may function as a Project management office PMO, many of its engineers/overseers/staff that manage these projects have Little to no Project management knowledge. Most of these projects has been executed without the development of a Project management plan as such, projects have been faced with schedule delays and changes to the scope of work. Further, the breakdown in communication management has led to conflict. The development of the FGP seeks to provide the necessary framework to project managers, engineers, overseers and staff to manage this and future projects more effectively and efficiently.

1.3. Purpose

The link between landfill gases LFG and odor has become more evident over the years since the development of new landfill sites and the upgrade of existing sites was done to accommodate it influx of increased waste disposal across the country. As such, the talks of developing/constructing landfill gas management facilities have become a topic of discussions since the environment in which any human being dwells has direct effects on their health makes LFG a critical issue since gases emitted from landfills are harmful to the environment and the general health and wellbeing of the population. The intended purpose of the development of this document was for this Project management plan to serve as a guide to Project managers to aid in the delivery of high-quality projects according to the

standards outlined by PMI. The document consisted of a Project charter and subsidiary management plans, incorporating all knowledge areas outlined in the PMBOK guide.

Upon proper implementation and use of this document, the Project achieved the following benefits:

- 1. Mitigation of landfill gas into the atmosphere
- 2. Effective communication among all stakeholders
- 3. Improved Schedule, resource and cost efficiency
- 4. Effectual monitoring and control of projects
- 5. Clear guidelines for Project quality requirements

1.4. General objective

To develop a Project Management Plan, according to the standards outlined by the Project Management Institute (PMI), to manage the design/construction/implementation of a Landfill Gas Management Facility at Haags Bosch Sanitary Landfill, Guyana, South America

1.5. Specific objectives

- 1. To develop a Project Charter for the landfill project
- 2. To develop a sustainable scope management plan to establish project deliverables.

3. To develop a schedule management plan as a guide to the project manager to complete the project within an established timeframe.

4. To develop a cost management plan to incorporate all project expenditures and the efficient allocation of finance.

5. To develop a quality management plan to outline the acceptable standards of the project.

6. To develop a resource management plan to ensure the availability of the adequate resources throughout the project duration.

7. To develop a communication management plan to establish the necessary strategies which will be used throughout the project.

8. To develop a risk management plan to identify, evaluate and plan for possible risk throughout the project.

9. To develop a procurement management plan to identify the procurement requirements that must be acquired for the project.

10. To develop a stakeholder engagement plan to identify an effectively engage stakeholders on project matters.

11. To mitigate the emission of landfill gas (LFG) into the environment.

2 THEORETICAL FRAMEWORK

2.1 Company/Enterprise framework

2.1.1 Company/Enterprise background

The Ministry of Communities is the primary Government Agency which links the various authorities with the Central Government. It facilitates, coordinates and monitors the execution and implementation of several projects, programs and activities in the various local government arms/organs and ensures that these activities are in conformity with the legal framework and the policies of the Government (About Us | Ministry of Local Government and Regional Development, n.d.).

Policy Development and Administration: is responsible for effectively and efficiently formulating regional and local government policy and legislation; monitoring the implementation said policy; and for ensuring the proper management of human, financial and physical resources (About Us | Ministry of Local Government and Regional Development, n.d.).

Regional Development: is responsible for facilitating and monitoring the development of the Regions by coordinating regional strategic planning which promotes good governance, inclusivity, economic and social development and is grounded by policy coordination, collaboration, and capacity building (About Us | Ministry of Local Government and Regional Development, n.d.).

Local Government Development: is responsible for facilitating and monitoring the development of communities through the strengthening of the local democratic organs enabling them to efficiently provide public goods and services to the communities and be financially self-sufficient.

2.1.2 Mission and vision statements

The mission statement of the Ministry of Local Government and Regional Development (MLGRD) supervise and maintain the legal and regulatory framework of the system of local and regional administration; to encourage and facilitate the development of the regions and local organs; and to support the continued integration and development of the hinterland communities (Ministry of Local Government and Regional Development, n.d.).

The vision statement of the Ministry of Local Government and Regional Development (MLGRD) is to improve the quality of life of Guyanese by promoting the development of cohesive, empowered and sustainable communities (CESC) through collaborative and integrated planning, good governance and satisfactory service delivery (About Us | Ministry of Local Government and Regional Development, n.d.).

The final graduation project FGP was aligned with both the mission and vision statements of the ministry since the project management plan served as a guide using the well documented processes for all community project/development and sustainable project moving forward. Further, this project fostered collaboration and integrated planning, good governance and satisfactory service delivery to residents affected by the Haags Bosch Sanitary Landfill (HBSL).

2.1.3 Organizational structure

The organizational structure outlined the key departments/areas/individuals that has the daily responsibility to aid in effectively and efficiently delivering the mandate of the Ministry of Local Government and Regional Development to the people of Guyana. A point to note, the ministry is governed by a Minister. However, the Permanent secretary has the responsibility of the daily operations of the ministry.

Figure 1 Organizational Structure (Source: Compiled by the Author, S. Holder, 2023)

2.1.4 Products offered

• Improving the local environment – The ministry of local government promotes recycling campaign to promote sustainable practices countrywide

• Providing and developing local open space and recreation facilities – These provide a safe green space within communities for families as it is in keeping with the ministry mission and vision statements.

• Administer responsibilities under laws and regulations- The Ministry of Local Government and Regional Development will have a collective approach towards dealing with solid and water wastes through the development and implementation of the relevant Legislative Framework for National Sold Waste Management which sees the improvement and development of landfill sites

throughout the country

2.2 Project Management concepts

Project - According to PMI (2021), a project is a temporary endeavor undertaken to create a unique product, service or result. A project is temporary in that it has a defined beginning and end in time, and therefore defined scope and resources. A project is unique in that it is not a routine operation, but a specific set of operations designed to accomplish a singular goal (Project Management Office, n.d.). A project can be considered successful if it has achieved its desired deliverables within the stipulated timeframe, within budget and according to outlined objectives. Further, a key element in the successful completion is that the project must provide value to stakeholders which will result in their support, hence improving the project success probability.

Project management – This is the use of specific knowledge, skills, tools and techniques to deliver something of value to people (Project Management Institute, 2020). Therefore, projects must be planned, guided and executed. The ministry of local government and regional development undertakes a variety of project across the country. As such, the project management plan established through the FGP will serve as guide to all technical officers and project managers in future projects.

A project life cycle - is the series of phases such as starting the project, organizing and preparing, carrying out the work and ending the project. These phases provide the basic framework for managing the project from beginning to completion. Based on the circumstances /conditions a project is governed by a suitable project lifecycle must be considered. As such, since the desired outcome of the FGP is known, the appropriate project life cycle to be used is the predictive project lifecycle.

Knowledge Area - are identified area of project management defined by its knowledge requirements and described in terms of its component processes, practices, inputs, outputs, tools, and techniques (PMI, 2017, p.23). The Knowledge areas relevant to the development of the project management plan will be accounted for at the completion of the development of the FGP and the gas management project. The Knowledge areas were as follows:

- 1. Project Integration Management
- 2. Project Scope Management
- 3. Project Schedule Management
- 4. Project Cost Management 16
- 5. Project Quality Management
- 6. Project Resource Management
- 7. Project Communications Management
- 8. Project Risk Management
- 9. Project Procurement Management
- 10. Project Stakeholder Management

Project Management Processes - According to the PMBOK Guide (2020), the project life cycle is managed by executing a series of project management activities known as project management processes, there are mainly 49 processes which are grouped in 5 categories (initiating, planning, executing, monitoring and controlling and closing) which are known as the project management process groups. This process will be accounted for during the preparation of the FGP.

Project Management Process Group - are logical grouping of project management processes to achieve specific project objectives which are independent of project phases (PMI, 2017, p.23). Since MLGRD fully utilizes these process groups (Initiation, Planning, Executing, Monitoring and Evaluation, and Closing), they will be used along with the appropriate project management tools and techniques throughout the development of this FGP to achieve the desired outcome.

2.2.1 **Project management principles**

These are the fundamental element a project manager must consider/follow through the management of the project for it to be successful (Principles of Project Management | PMI, n.d.). The elements which will be followed throughout the development of the FGP are as follows:

1. There must be a project as defined in the PMBOK, and not just a task or an ongoing activity.

2. There must be a single leader (project manager), one who is experienced and willing to take the responsibility for the work.

3. There must be an informed and supportive management that delegates appropriate authority to the project manager

4. There must be a dedicated team of qualified people to do the work of the project.

5. The project goal must be clearly defined along with the priorities of the "shareholders

6. There must be an integrated plan that outlines the action required in order to reach the goal

7. There must be a schedule establishing the time goals of the project

8. There must be a budget of costs and/or resources required for the project

2.2.2 Project management domains

A Project Performance Domain is defined as a group of related activities that are critical for the effective delivery of project outcomes. These are: Uncertainty, Team, Stakeholder, Measurement, Delivery, Project work, planning, delivery approach and lifecycle.

2.2.3 Predictive, adaptative and hybrid projects

Predictive projects – This Provide a linear, specific development plan structured around producing a pre-determined end result within a specific time frame. The waterfall or predictive approach to projects are useful approach when the scope of a project is known. In this type of project method, a single episode of directive discussion is followed by a lengthy production or development period, ending in the delivery of the resulting project (Adaptive vs. Predictive: Is the End Clear? – IDEA, n.d.). This does not apply to the FGP since there is a clear scope and deliverable outcome already established for this project.

Adaptive Projects - This can be considered as projects that face changing conditions. Adaptive projects involve breaking a project into small components over an undetermined timeline to allow ultimate flexibility in directing the course of the project. While clear knowledge of the project objectives simplifies planning considerably, surprises are almost inevitable. Time does not stand still during a lengthy project development process organizations may find that what suited their needs in January will not measure up in July. When organizations are faced with developing new projects with unclear objectives, Adaptive or Agile methodologies provide the greatest flexibility (Adaptive vs. Predictive: Is the End Clear? – IDEA, n.d.). Since there are already clear outcomes and objectives for the FGP, this methodology Will be the most suited for the Project.

Hybrid Projects – These are a combination of both the adaptive and the predictive projects with each aspect/condition being done according to its condition e.g. components that are known will be done according to the predictive project style and those that are unknown will be done according to the adaptive project style.

2.2.4 Project management

Project management is the use of specific knowledge, skills, tools and techniques to deliver something of value to people (Project Management Institute, 2020). Therefore, projects must be planned, guided and executed. The ministry of local government and regional development undertakes a variety of project across the country. As such, the project management plan established through the FGP will serve as guide to all technical officers and project managers in future projects.

2.2.5 Project management knowledge areas and processes

The project management processes are grouped into five-process group: (PMBOX Guide sixth edition, 2017. P.23). Initiating Process Group is geared towards obtaining authorization to start the project These are:

1. Planning Process Group - the processes required to establish the project scope, project objectives (specific and general), and define the methodologies.

2. Executing Process Group performs the work defined in the project management plan

3. Monitoring and Controlling Process - processes required to track, reviews and regulates the progress and performance of the project.

4. Closing Process Group - completion of the project.

	Project Management Process Groups						
Knowledge Areas	Initiating Process Group	Planning Process Group	Executing Process Group	Monitoring and Controlling Process Group	Closing Process Group		
4. Project Integration Management	4.1 Develop Project Charter	4.2 Develop Project Management Plan	4.3 Direct and Manage Project Work 4.4 Manage Project Knowledge	4.5 Monitor and Control Project Work 4.6 Perform Integrated Change Control	4.7 Close Project or Phase		
5. Project Scope Management		5.1 Plan Scope Management 5.2 Collect Requirements 5.3 Define Scope 5.4 Create WBS		5.5 Validate Scope 5.6 Control Scope			
6. Project Schedule Management		6.1 Plan Schedule Management 6.2 Define Activities 6.3 Sequence Activities 6.4 Estimate Activity Durations 6.5 Develop Schedule		6.6 Control Schedule			
7. Project Cost Management		7.1 Plan Cost Management 7.2 Estimate Costs 7.3 Determine Budget		7.4 Control Costs			
8. Project Quality Management		8.1 Plan Quality Management	8.2 Manage Quality	8.3 Control Quality			
9. Project Resource Management		9.1 Plan Resource Management 9.2 Estimate Activity Resources	9.3 Acquire Resources 9.4 Develop Team 9.5 Manage Team	9.6 Control Resources			
10. Project Communications Management		10.1 Plan Communications Management	10.2 Manage Communications	10.3 Monitor Communications			
11. Project Risk Management		11.1 Plan Risk Management 11.2 Identify Risks 11.3 Perform Qualitative Risk Analysis 11.4 Perform Quantitative Risk Analysis 11.5 Plan Risk Responses	11.6 Implement Risk Responses	11.7 Monitor Risks			
12. Project Procurement Management		12.1 Plan Procurement Management	12.2 Conduct Procurements	12.3 Control Procurements			
13. Project Stakeholder Management	13.1 Identify Stakeholders	13.2 Plan Stakeholder Engagement	13.3 Manage Stakeholder Engagement	13.4 Monitor Stakeholder Engagement			

Figure 2. Project Management Process Group and Knowledge Area Mapping

Reprinted from A Guide to the Project Management Body of Knowledge (PMBOK® Guide) Sixth Edition, by Project Management Institute, 2017, p. 25. Copyright 2017 by Project Management Institute, Inc.

2.2.6 **Project life cycle**

Figure 3 Generic Project lifecycle

Figure 4 Haags Bosch Gas Management Project lifecycle (Source: Compiled by the Author, S. Holder, 2023)

2.2.7 Company strategy, portfolios, programs and projects

The Ministry of Communities is the primary Government Agency which links the various authorities with the Central Government. It facilitates, coordinates and monitors the execution and implementation of a number of projects such as: Development and upgrade of landfills and green spaces, construction and upgrade of community roads etc.

Programs such as: Recycling programs, Community enhancement and other activities in the various local government arms/organs and ensures that these activities are in conformity with the legal framework and the policies of the Government

2.3 Other applicable theory/concepts related to the project topic and context

2.3.1 Current situation of the problem or opportunity in study

Haags Bosch Sanitary landfill was developed in February 2011 with the aim of provide a sustainable solution to the solid waste collection and disposal problems in communities along the east bank, west bank, west coast and Georgetown. To date, the increase of garbage influx has increased significantly due to development in all sectors seeing the closure of cell one and the development and usage of a second cell to accommodate the increase influx of garbage.

The initial development of the landfill was done in accordance to specifications outlined by the Environmental Protection Agency (EPA), considering buffers, waterways etc. However, due to the rapid development in the housing industry, these lands have been developed into various community consisting of approximately 1000 household which are now being affected by odors emitting from the landfill.

The steady complains of discomfort by residents living around the landfill has become a major concern to the Government of Guyana since this can lead to negative health conditions and environmental effects. The migration of landfill Gases continue to be a major challenge at Haags Sanitary Landfill, this project seeks to mitigate the migration of landfill gases into the atmosphere. Hence, reducing odors that affect residents in and around the landfill site, also mitigate the harmful emissions of greenhouse gases into the atmosphere which contributes to climate change.

2.3.2 Previous research done for the topic in study

There was previous research done on a previous dumpsite which was decommissioned a few years ago. The information was not public. However, members of the said team along with others has recommence research and will use this project as a pilot since this was never done in the country.

3 METHODOLOGICAL FRAMEWORK

3.1 Information sources

Information sources are distinguished by the form of representation: textual (books, journals, manuscripts), graphic (graphs, diagrams, plans, charts), and audiovisual (sound recordings, motion pictures, slides) (Information Source, n.d.). These are often a person, thing, or place from which information comes, arises, or is obtained. Also, An Information Source is a source of information for somebody, i.e. anything that might informs a person about something on provide knowledge to somebody. Information sources may be observations, people's speeches, documents, pictures, organizations etc. (Sources of Information, 2018).

3.1.1 Primary sources

These sources are records of events or evidence as they are first described or actually happened without any interpretation or commentary. It is information that is shown for the first time or original materials on which other research is based (University of Minnesota, 2015). The primary source of information which will be used throughout the development of the FGP project are: Thesis, dissertations, scholarly journal articles (research based), some government reports.

3.1.2 Secondary sources

These sources offer an analysis or restatement of primary sources. They often try to describe or explain primary sources. They tend to be works which summarize, interpret, reorganize, or otherwise provide an added value to a primary source (University of Minnesota, 2015). The secondary source/s which will be used throughout the development of this FGR are as follows: Textbooks, edited works, books and articles that interpret or review research works, histories, biographies, literary criticism and interpretation, reviews of law and legislation, political analyses and commentaries

Objectives	Information sources			
	Primary	Secondary		
To develop a Project	Interviews with	PMBOK® Guide PMI Database,		
Charter for the landfill	stakeholders and	Websites, Gas management standard		
project	project sponsor	and guidelines, Historical information		
To develop a sustainable	Interviews with	PMBOK® Guide PMI Database,		
scope management plan	stakeholders and	Websites, Gas management standard		
to establish project	project sponsor	and guidelines, Historical information		
deliverables.				
To develop a schedule	Interviews with	PMBOK® Guide PMI Database,		
management plan as a	stakeholders and	Websites, Gas management standard		
guide to the project	project sponsor	and guidelines, Historical information		
manager to complete the				

Chart 1: Information Sources (Source S. Holder, The Author, February 2023)

project within an				
established timeframe.				
To develop a cost	Interviews with	PMBOK® Guide PMI Database,		
management plan to	stakeholders and	Websites, Gas management standard		
incorporate all project	project sponsor	and guidelines, Historical information		
expenditures and the				
efficient allocation of				
finance.				
To develop a quality	Interviews with	PMBOK® Guide PMI Database,		
management plan to	stakeholders and	Websites, Gas management standard		
outline the acceptable	project sponsor	and guidelines, Historical information		
standards of the project.		Websites, Gas management standard		
		and guidelines, Historical information		
To develop a resource	Interviews with	PMBOK® Guide PMI Database,		
management plan to	stakeholders and	Websites, Gas management standard		
ensure the availability of	project sponsor	and guidelines, Historical information		
the adequate resources				
throughout the project				
duration.				
To develop a	Interviews with	PMBOK® Guide PMI Database,		
communication	stakeholders and	Websites, Gas management standard		
management plan to	project sponsor	and guidelines, Historical information		
establish the necessary				
strategies which will be				
used throughout the				
project.				

To develop a risk	Interviews with	PMBOK® Guide PMI Database,		
management plan to	stakeholders and	Websites, Gas management standard		
identify, evaluate and	project sponsor	and guidelines, Historical information		
plan for possible risk				
throughout the project.				
To develop a	Interviews with	PMBOK® Guide PMI Database,		
procurement	stakeholders and	Websites, Gas management standard		
management plan to	project sponsor	and guidelines, Historical information		
identify the procurement				
requirements that must				
be acquired for the				
project.				
To develop a	Interviews with	PMBOK® Guide PMI Database,		
stakeholder engagement	stakeholders and	Websites, Gas management standard		
plan to identify an	project sponsor	and guidelines, Historical information		
effectively engage		Websites, Gas management standard		
stakeholders on project		and guidelines, Historical information		
matters.				
To mitigate the emission	Interviews with	PMBOK® Guide PMI Database,		
of landfill gas (LFG)	stakeholders and	Websites, Gas management standard		
into the environment.	project sponsor	and guidelines, Historical information		

3.2 Research methods

Research methods are the strategies, processes or techniques utilized in the collection of data or evidence for analysis in order to uncover new information or create better understanding of a topic (Booth, 2018). Developing your research methods is an integral part of your research design. The FGP used multiple research methods through its development.

Example:

3.2.1 Qualitative Research gathers data about lived experiences, emotions or behaviors, and the meanings individuals attach to them. It assists in enabling researchers to gain a better understanding of complex concepts, social interactions or cultural phenomena. This type of research is useful in the exploration of how or why things have occurred, interpreting events and describing actions (Booth, 2018). This research method had three main components, these are interpretive, multimethod and takes place in the subject's natural setting. The mixture of the three was used throughout the development of the FGP

3.2.2 Quantitative Research gathers numerical data which can be ranked, measured or categorized through statistical analysis. It assists with uncovering patterns or relationships, and for making generalizations. This type of research is useful for finding out how many, how much, how often, or to what extent (Booth, 2018).

Objectives	Research methods			
	Qualitative Research	Quantitative Research	Mixed	
To develop a	A mixture of the	This method was used	A combination of	
Project Charter for	three main	when analyzing the	Qualitative and	
the landfill project	components was	data collection	Quantitative	
	used through	methods identified in	Research will be	
	throughout the data	Chart 1	used	
	collection methods			
	identified in Chart 1			
To develop a	A mixture of the	This method was used	A combination of	
sustainable scope	three main	when analyzing the	Qualitative and	
management plan to	components was	data collection	Quantitative	
establish project	used through	methods identified in	Research will be	
deliverables.	throughout the data	Chart 1	used to develop	
	collection methods		the Scope	
	identified in Chart 1		Management Plan	
To develop a	A mixture of the	This method was used	A combination of	
schedule	three main	when analyzing the	Qualitative and	
management plan as	components was	data collection	Quantitative	
a guide to the	used through	methods identified in	Research will be	
project manager to	throughout the data	Chart 1	used to develop	
complete the project	collection methods		the Schedule	
within an	identified in Chart 1		Management Plan	
established				
timeframe.				
To develop a cost	A mixture of the	This method was used	A combination of	
management plan to	three main	when analyzing the	Qualitative and	

Chart 2: Research Methods (Source S. Holder, The Author, February 2023)
incorporate all	components was	data collection	Quantitative	
project expenditures used through		methods identified in	Research will be	
and the efficient	throughout the data	Chart 1	used to develop	
allocation of	collection methods		the Cost	
finance.	identified in Chart 1		Management Plan	
To develop a quality	A mixture of the	This method was used	A combination of	
management plan to	three main	when analyzing the	Qualitative and	
outline the	components was	data collection	Quantitative	
acceptable	used through	methods identified in	Research will be	
standards of the	throughout the data	Chart 1	used to develop	
project.	collection methods		the Quality	
	identified in Chart 1		Management Plan	
To develop a	A mixture of the	This method was used	A combination of	
resource three main		when analyzing the	Qualitative and	
management plan to	components was	data collection	Quantitative	
ensure the	used through	methods identified in	Research will be	
availability of the	throughout the data	Chart 1	used to develop	
adequate resources	collection methods		the Resource	
throughout the	identified in Chart 1		Management Plan	
project duration.				
To develop a	A mixture of the	This method was used	A combination of	
communication	three main	when analyzing the	Qualitative and	
management plan to	components was	data collection	Quantitative	
establish the	used through	methods identified in	Research will be	
necessary strategies throughout the data		Chart 1	used to develop	
which will be used	collection methods		the	
throughout the	identified in Chart 1		Communication	
project.			Management Plan	

To develop a risk A mixture of the		This method was used	A combination of
management plan to	three main	when analyzing the	Qualitative and
identify, evaluate	components was	data collection	Quantitative
and plan for	used through	methods identified in	Research will be
possible risk	throughout the data	Chart 1	used to develop
throughout the	collection methods		the Risk
project.	identified in Chart 1		Management Plan
To develop a	A mixture of the	A mixture of the three	A combination of
procurement	three main	main components was	Qualitative and
management plan to	components was	used through	Quantitative
identify the	used through	throughout the data	Research will be
procurement	throughout the data	collection methods	used to develop
requirements that	collection methods	identified in Chart 1	the Procurement
must be acquired for	identified in Chart 1		Management Plan
the project.			
To develop a	A mixture of the	A mixture of the three	A combination of
stakeholder	three main	main components was	Qualitative and
engagement plan to	components was	used through	Quantitative
identify an	used through	throughout the data	Research will be
effectively engage	throughout the data	collection methods	used to develop
stakeholders on	collection methods	identified in Chart 1	the Stakeholder
project matters.	identified in Chart 1		Management Plan
To mitigate the	A mixture of the	A mixture of the three	A combination of
emission of landfill	three main	main components was	Qualitative and
gas (LFG) into the	components was	used through	Quantitative
environment.	used through	throughout the data	Research will be
	throughout the data	collection methods	used to ascertain
	collection methods	identified in Chart 1	the best approach
	identified in Chart 1		

3.3 Tools

Something tangible, such as a template or software program, used in performing an activity to produce a product or result (PMI, 2017, p.725). Chart 3 below includes the tools and techniques that will be used throughout the development of the FGP.

Objectives	Tools		
To develop a Project Charter for the	Project charter template		
landfill project			
To develop a sustainable scope	• Requirement's traceability		
management plan to establish project	matrix template		
deliverables.	• Requirements management		
	plan template		
	• Scope management plan		
	template		
	• WBS generator		
To develop a schedule management	• Schedule management plan		
plan as a guide to the project manager	template		
to complete the project within an	• Microsoft project 2019		
established timeframe.			
To develop a cost management plan to	• Cost management plan		
incorporate all project expenditures and	template		
the efficient allocation of finance.	• Budget template MLGRD		
	• Cost baseline template		
To develop a quality management plan	• Quality management plan		
to outline the acceptable standards of	template		
the project.	• Checklist template		

Chart 3: Tools (Source S. Holder, The Author, February 2023)

To develop a resource management	• Resource Management Plan		
plan to ensure the availability of the	template		
adequate resources throughout the	• Resource calendar		
project duration.	• Responsibility Assignment		
	Matrix		
To develop a communication	Communications		
management plan to establish the	Management Plan template		
necessary strategies which will be used	Communication matrix		
throughout the project.			
To develop a risk management plan to	• Risk Management Plan		
identify, evaluate and plan for possible	template		
risk throughout the project.	• Risk register template		
To develop a procurement management	• Procurement Management		
plan to identify the procurement	Plan template		
requirements that must be acquired for			
the project.			
To develop a stakeholder engagement	• Stakeholder Management		
plan to identify an effectively engage	Plan template		
stakeholders on project matters.	• Stakeholder Analysis Chart		
	• Stakeholder engagement		
	assessment matrix		
To mitigate the emission of landfill gas	Cheek sheets		
(LFG) into the environment.	• Historical data		

3.4 Assumptions and constraints

An assumption is "a factor in the planning process considered to be true, real, or certain, without proof or demonstration" (PMI, 2017, p. 699). A constraint is "a factor that limits the options for

managing a project, program, portfolio, or process" (PMI, 2017, p. 701). "Project assumptions and constraints are identified at the beginning of the project. Throughout the project life cycle, they were refined and re-analyzed. Project assumptions and constraints are key to many processes in the PMBOK Guide" (Usmani, 2021). Chart 4 below includes assumptions and constraints that was considered throughout the development of the FGP.

Objectives	Assumptions	Constraints
To develop a Project Charter for the landfill project	Project charter was approved for the development of the Project Management Plan	Delay in approval
To develop a sustainable scope management plan to establish project deliverables.	All necessary and relevant data are available to the Author	Standards are rigid and no room for scope variation
To develop a schedule management plan as a guide to the project manager to complete the project within an established timeframe.	The time allotted for the project was sufficient	Additional time needed due to rainfall
To develop a cost management plan to incorporate all project expenditures and the efficient allocation of finance.	The project was executed on budget	Scope variation due to excessive rainfall
To develop a quality management plan to outline the acceptable standards of the project.	This highlighted the quality requirements for the project	Poor quality of raw material available locally

Chart 4: Assumptions and Constraints (Source S. Holder, The Author, February 2023)

Objectives	Assumptions	Constraints
To develop a resource management plan to	Work force from	Insufficient
ensure the availability of the adequate	within the community	skilled workforce
resources throughout the project duration.	was available to	within the
	execute the project	community
To develop a communication management	Accurate and timely	
plan to establish the necessary strategies	delivery of project	Poor cellphone
which will be used throughout the project.	update was disturbed	and wifi service
	to all stakeholders	
To develop a risk management plan to	Project risk was	
identify, evaluate and plan for possible risk	identified and	All risk must be
throughout the project.	mitigation measures	identified at the
	were put in place at the	beginning of the
	beginning of the	project
	project	
To develop a procurement management plan		Unavailability of
to identify the procurement requirements	All goods and sorvings	critical goods
that must be acquired for the project.	for the project can be	locally which
		attracted
	procured locally	additional time
		and cost
To develop a stakeholder engagement plan	All stakeholders were	Stakeholders had
to identify an effectively engage	fully supportive of the	other
stakeholders on project matters.	project	commitments
To mitigate the emission of landfill gas	Project increased air	Leakage in wells
(LFG) into the environment.	quality for residents	Leakage III wells

3.5 Deliverables

A deliverable is "any unique and verifiable product, result, or capability to perform a service that is required to be produced to complete a process, phase, or project" (PMI, 2017, p. 704). Chart 5 below shows the expected deliverables to be developed during the development of the FGP. The summary of deliverables must be shown in a chart such as chart 5 below.

Objectives	Deliverables		
To develop a Project Charter for the	• Project charter		
landfill project			
To develop a sustainable scope	• Scope management plan		
management plan to establish project			
deliverables.			
To develop a schedule management plan	• Schedule management plan		
as a guide to the project manager to			
complete the project within an established			
timeframe.			
To develop a cost management plan to	• Cost management plan		
incorporate all project expenditures and			
the efficient allocation of finance.			
To develop a quality management plan to	Quality management plan		
outline the acceptable standards of the			
project.			

Chart 5: Deliverables (Source S. Holder, The Author, February 2023)

To develop a resource management plan	Resource Management Plan
to ensure the availability of the adequate	
resources throughout the project duration.	
To develop a communication	Communications Management
management plan to establish the	Plan
necessary strategies which will be used	
throughout the project.	
To develop a risk management plan to	Risk Management Plan
identify, evaluate and plan for possible	
risk throughout the project.	
To develop a procurement management	Procurement Management Plan
plan to identify the procurement	
requirements that must be acquired for the	
project.	
To develop a stakeholder engagement	Stakeholder Management Plan
plan to identify an effectively engage	
stakeholders on project matters.	
To mitigate the emission of landfill gas	Cheek sheets
(LFG) into the environment.	

4 **RESULTS**

4.1 **Project Chárter**

This was the first step to define the key input elements in developing the project management plan. The project charter was created based on the available project-related documents, and other relevant information gathered from interviews. The Project Charter formally authorized the project and provided the Project Manager with the authority to allocate organizational resources to the project to produce the Project Management Plan.

Project Name: Construction of Gas Management Facility at Haags Bosch Sanitary Landfill, Guyana

Project Start Date: January 15, 2023 Project End Date: July 9, 2023

Project Objectives:

General Objective

To develop a Project Management Plan, according to the standards outlined by the Project Management Institute (PMI), to manage the design/construction/implementation of a Landfill Gas Management Facility at Haags Bosch Sanitary Landfill, Guyana, South America.

Specific Objectives:

1. To develop a Project Charter for the landfill project

2. To develop a sustainable scope management plan to establish project deliverables.

3. To develop a schedule management plan as a guide to the project manager to complete the project within an established timeframe.

4. To develop a cost management plan to incorporate all project expenditures and the efficient allocation of finance.

5. To develop a quality management plan to outline the acceptable standards of the project.

6. To develop a resource management plan to ensure the availability of the adequate resources throughout the project duration.

7. To develop a communication management plan to establish the necessary strategies which will be used throughout the project.

8. To develop a risk management plan to identify, evaluate and plan for possible risk throughout the project.

9. To develop a procurement management plan to identify the procurement requirements that must be acquired for the project.

10. To develop a stakeholder engagement plan to identify an effectively engage stakeholders on project matters.

11. To mitigate the emission of landfill gas (LFG) into the environment.

Project Purpose/ Justification

Haags Bosch Sanitary landfill was developed in February 2011 with the aim of provide a sustainable solution to the solid waste collection and disposal problems in communities along the east bank, west bank, west coast and Georgetown. To date, the increase of garbage influx has increased significantly due to development in all sectors seeing the closure of cell one and the development and usage of a second cell to accommodate the increase influx of garbage.

The initial development of the landfill was done in accordance to specifications outlined by the Environmental Protection Agency (EPA), considering buffers, waterways etc. However, due to the rapid development in the housing industry, these lands have been developed into various community consisting of approximately 1000 household which are now being affected by odors emitting from the landfill.

The steady complains of discomfort by residents living around the landfill has become a major concern to the Government of Guyana since this can lead to negative health conditions and environmental effects. The migration of landfill Gases continue to be a major challenge at Haags Sanitary Landfill, this project seeks to mitigate the migration of landfill gases into the atmosphere. Hence, reducing odors that affect residents in and around the landfill site, also mitigate the harmful emissions of greenhouse gases into the atmosphere which contributes to climate change.

The project management plan to be developed will serve as a guide to the project team and stakeholders throughout the lifecycle of the Landfill Gas Management Projects at Haags Bosch Landfill Site and at existing and developing sites around the country.

Project Budget

Proposed expenses for the project management plan for a Gas management Facility at Haags Bosch Sanitary Landfill are as follows:

Construction of Gas Management Facility	GYD 84,081,400
Contingency Sum (10%)	GYD 8,408,140
Evaluation	GYD 92,489,540

Project planning and development assumptions

 The project management plan was completed within the timeframe outlined by the University

2. All stakeholders approved and supported the project and its objectives.

3. The project was done using the best practices outlined in the Project Management Book of Knowledge (PMBOK® Guide).

4. All health and safety protocols were considered during construction

Project constraints

- 1. Inclement weather affected the construction process
- 2. No lessons learned to follow since this project was first of its kind in Guyana
- 3. Access to site location was oven grown with bushes
- 4. Frequent increase in materials prices impacted the project budget

Project development risks

- 1. The delay of all the necessary approval and permits affected the timeline of the project.
- 2. If proper construction methodology was not employed, this could have led to further

migration of landfill gasses into the environment

Project main milestones

Deliverable	Finish
	estimated
	date
1.1 FGP profile	January 2023
1.1.1 Tutorials	March 2023
1.2 FGP development	June 2023
1.2.1 Subsidiary Management Plans	May 2023
1.2.2 Conclusion	June 2023
1.2.3 Recommendation	June 2023
1.3 Readers review	July 2023
1.4 Board of examiners evaluation	July 2023

Chart 6 Project Milestones (Source S. Holder, The Author, February 2023)

Theroretical framework

Estate of the "matter"

Odor from the landfill has been an age-old problem in Guyana and has been increasing with the increased influx of garbage to landfills. As such the landfill gas management project seeks to relieve residents of the odor and to improve the health and environmental quality around the landfill

Example: Considering the clinics example which has been using along this document: Description of what a clinic is, what is its function and benefits and functional features. Factors such as current status of the implementation of sustainable design and construction in clinics and what standards are being used for those purposes.

In order to complete this section several research activities can be used: bibliographical (reports, thesis, books or magazines, interviews to experts of clinic functionaries, field observation, etc.

Basic conceptual framework

List of the basic concepts to be included in the document.

Examples: project management, LEED certification, clinics, sustainable design and construction, etc.

Objective	Name of deliverable	Informatio n sources	Research method	Tools	Restrictio ns
1 To develop a report that documents the analysis of different clinics constructio ns standards to define its basic elements.	Report of the constructio n standards for clinics constructio n.	Secondary: thesis, reports Primary: field interviews.	Qualitative. Written information analysis.	Bibliographical files Questionaries (SurveyMonkey , Google Forms) Semi-structured interviews	Few books on the subject. Difficult to define the populatio n and thus the sample. Limited time of the personnel.

Chart 7 Methodological framework (Source S. Holder, The Author, February 2023)

Validation of the work in the field of the regenerative and sustainable development.

The mitigating methane emissions plays a major part in meeting the Paris greenhouse gas (GHG) reduction goals (Getting It Right to Reduce Methane Emissions, n.d.). Due to the lifespan and warming effect of methane which makes it a climate forcer, methane emissions mitigation is an urgent and we must act now to reduce the effects of global warming. The mitigating methane emissions from our landfill operations was an opportunity to enhance the environmental lifespan. Hence, contributing to the improvement of regenerative and sustainable development.

While environmental health is the initial motivation of this Project. The net results were the significant reduction of the methane emissions through the country which directly contributes to global warming and climate change.

Key performance indicators determined if this FGP has achieved its objective. The key performance objectives which was used to measure this FGP are the reduce odor which indicates les LFG migration and the successful completion to the FGP with the guidance of the Project management plan which encompasses the 10-knowledge area outlined by PMI.

4.2 Scope Management Plan

According PMBOK Guide Seventh Edition, this plan was a component of the Project or program management plan that describes how the scope will be defined, developed, monitored, controlled and validated

The Scope Management Plan provided the scope for the project and will document the approach to scope management, the roles and responsibilities of the project team as it relates to the project scope, scope definition, verification, change control measures, and the work breakdown structure.

4.2.1. Requirements

These are requirements based on interviews with stakeholders, lessons learned from pass projects and documentation analysis of similar projects that are taken into consideration to meet the needs of the stakeholders.

ID	Requirements	Business,	Project	Verification
	Description	Needs,	Objectives	
	-	Opportunities,		
		Goals,		
		Objectives		
R1	Gas wells should be		Ensure	Topographic servers
	constructed in the		adherence to	and engineering
	right location and	Service life	plans	surveys
	elevation			
R2	Structure should be	Service life	workmanship	Inspection
	free of visual defects			
R2	Drums should be	Regulations	Safety	Inspection
	filled with correct			
	filter media			
R4	Mild steel casing	Structural	Safety	Inspection/certificate
	should be of	Integrity		
	adequate strength			
	requirements			
	outlined in technical			
	specification of			
	contract document			
R5	Gas Emissions	Regulations	Ensure	Inspection,
	should be within		functionality	Measurement
	acceptable tolerance			
	levels			
R6	Filter pipes should be	Regulations	Ensure	Inspection
	perforated as requires		adherence to	
			plans	

Chart 8 Requirements Traceability Matrix (Source: S. Holder, 2024)

4.2.2. Scope Definition

Project Name

Project Management Plan for the construction of a Landfill Gas Management Project at Haags

Bosch Sanitary Landfill, Guyana, South America

Project Description

This project entailed the construction of a gas management facility at the top of an existing cell to manage the landfill gas emissions. The gas management facility made up of approximately 30 wells being dug and fitted with vent pipes and filter media to solve the age-old problem of odor emitted from landfills through gas emission. This relieved residents of the odor and improve the health and environmental quality around the landfill.

Project Deliverables

- 1. Site Clearing and levelling
- 2. Excavation of drains and construction of berms around vent pipes
- 3. Drilling and casing of boreholes
- 4. Instillation of 150mm perforated schedule 26 PVC/HDPE vent pipes vertically installed into boreholes
- 5. Installation of plastic drums vent pipes with appropriate filter media
- 6. Project Management plan

Acceptance Criteria

- Structure is free of physical defects
- Dimensions and levels are set out as specified
- Filter media should be approved for use by the Environmental Protection Agency

Project Exclusion

• Nil

Constraints

- Inclement weather affected the construction process
- No lessons learned to follow since this project was first of its kind in Guyana
- Access to site location was oven grown with bushes
- Frequent increase in materials prices impacted the project budget

Assumptions

- All health and safety protocols were considered during construction
- All materials were readily available for the construction of this project

4.2.3. WBS

Level	WBS	WBS Name	Description/	Budget	Resources
	Code		Definition	(\$GYD)	
0	1.1	Surveys	Establishing	4,286,005	
			necessary levels		
			required to set out		
			the project		
			according to design		
2	1.1.1	Preliminaries	Temporary	1,500,000	
			structures,		Project
			mobilization,		Manager,
			demobilization, site		Office
			clearing, Site		Manager
			security		
2	1.1.1.1	Site Clearing	Removal of trees,	1,100,005	Site
			bushes and any		Engineer.
			obstacle that may		Trade
			hinder works		Foreman.
					Laborer
2	1.1.1.1.1	Site Levelling	Levelling site to	486,000	Site
		8	specifications with	,	Engineer.
			cutting and filling		Trade
			method		Foreman
					Laborer
2	1.1.1.1.1	Topographic	Establishing site	600,000	Site
		Surveys	levels & TBM	,	Engineer.
					Surveyor.
					Surveyor
					Technician
2	1.1.1.1.1.1	Engineering	Setting Out of	600,000	Site
		Survey	Design	,	Engineer.
			8		Surveyor.
					Surveyor
					Technician
1	1.2	Well Drilling	Drilling of vent	3.515.505	
-			holes	0,010,000	
2	1.2.1	Preliminaries	Temporary	8,869,500	Project
			structures.		Manager.
			mobilization.		Office
			demobilization. site		Manager
			clearing. Site		Ber
			security		
L			soundy		

Chart 9 WBD Dictionary (Source: S. Holder, 2024)

2	1.2.1.1	Test Pit	Preliminary drilling of hole on project site to assess the conditions	523,900	Site Engineer, Trade Foreman, Laborer
2	1.2.1.1.1	Borehole Drilling	Drilling holes to accommodate vent pipes.	19,868,900	Site Engineer, Trade Foreman, Laborer
2	1.2.1.1.1.1	Mild Steel Casing	Lining of well hole to avoid cave in	5,892,205	Site Engineer, Trade Foreman, Laborer
1	1.3	Vent Pipe Installation	Placing pipes to capture escaping gas	35,019,160	
2	1.3.1	Preliminaries	Temporary structures, mobilization, demobilization, site clearing, Site security	6,893,225	Project Manager, Office Manager
2	1.3.1.1	Perforated HDPE Pipe	Fabricate and install pipes in well	29,869,825	Site Engineer, Trade Foreman, Laborer
2	1.3.1.1.1	Cement/Bentonite Seal	Installing seals to prevent leaks	2,299,860	Site Engineer, Trade Foreman, Laborer
2	1.3.1.1.1.1	End Caps	Cover end of Install pipes	956,250	Site Engineer, Trade Foreman

Name	Roles	Responsibilities
Ministry of Local	Control Board	• Approve or deny scope change
Government and Regional		requests as appropriate.
Davalonmont		• Accept final deliverables
Development		
Head of Sanitation	Project	• Measure and verify project scope
Management Unit	Manager	• Facilitate scope change requests
		• Facilitate impact assessments of
		scope change requests
		• Organize and facilitate scheduled
		change control meetings
		• Communicate outcomes of scope
		change requests
		• Update project document upon
		approval of all scope.
Assistant Project Manager	Team Members	• Participate in defining change
and Project Team		resolutions
		• Evaluate the need for scope
		changes and communicate them to the
		project manager as necessary.
		• Can propose scope changes
		• Will execute change directives
		issued by project manager
Contractor	Site works	• Facilitate the operation/
		maintenance of the Gas Management
		System

Chart 10 Roles and Responsibilities (Source: S. Holder, 2024)

EPA	Regulatory	•	Monitoring and Evaluation
	Body		
Residents	Beneficiary	•	Provide Feedback

4.2.4. Scope Verification

Due to the nature of this project, scope verification is the responsibility of the Environmental Protection Agency, Guyana and the Senior Project Manager from the Ministry of Local Government and Regional. Once the project scope has been formally accepted, this establishes the project baseline. Throughout the project, a field supervisor from the EPA will do routine inspections of the project to evaluate whether or not the necessary works are being done. The Field Supervisor also assessed the Project Manager's field notes on a weekly basis as a form of verification.

4.2.5. Scope Control

The control of the scope was the responsibility of the project manager and the project team. The project team ensured that the project work done is in accordance with the WBS dictionary. All change requests recommended by the project team was submitted to the project manager using the change control request form. The project manager holds the authority to either approve or deny the changes. Once these changes were approved all project documents concerning the project scope will be updated.

Chart 11 Scope Verification and Control Template (Source: S. Holder, 2024)

Project Name: LANDFILL GAS MANAGEMENT PROJECT AT HAAGS BOSCH SANITARY LANDFILL

Project Number	Document Number
Project Manager	Revised Date
Samuel Holder	Contractor

W/DS Code	Deliverables	Ingreation Degults	Variation
WBS Code	Deliverables	Inspection Results	variation
1.1	Site Preparation		
1.1.1	Site Clearing		
1.1.1.1	Site Levelling		
1.1.1.1.1	Topographic Surveys		
1.1.1.1.1	Engineering Survey		
Date	Project Manager		
1.2	Well Drillling		
1.2.1	Preliminary		
1.2.1.1	Test Pit		
1.2.1.1.1	Borehole Drilling		
1.2.1.1.1.1	Mild Steel Casting		
Date	Project Manager		

4.3. Schedule Management Plan

The Schedule Management Plan purpose was to define the approach the team used to develop or create the project schedule.

4.3.1 Schedule Management Approach

Microsoft Projects will be used to Schedule the Project baseline, milestone list, activity list and Project network diagram. The tools and techniques used to develop the schedule management plan were expert judgement, data analysis, and meetings by the project manager and team. This was a critical component of the project because it provided the project team and the stakeholders with a visual of when the project can be expected to be completed as well as if the project is on Schedule or not.

4.3.2 Define Activities

Project activities were defined using expert judgement and information gathered from past projects.

Activity	Activity Name	Activity Description	Predecessor	Resource
ID				Requirements
1.1.1	Preliminares	Insurances, mobilization, demobilization, setting out of works according to technical specifications, Quality Control, Site security.		Project Manager, Office Manager, Project Team
1.1.2	Site Clearing and levelling	Removing of trees, topsoil and levelling project area as outlined by project team.	1.1.1	Site Engineer, Site Supervisor, Project Team
1.1.3	Excavation	Excavation of drains to design levels outlined by project team	1.1.2	Site Engineer, Site Supervisor, Project Team
1.1.4	Construction of berms around vent pipes	Construction of earthen berms using suitable excavated material to a design level outlined by project team	1.1.3	Site Engineer, Site Supervisor, Project Team
1.1.5	Drilling wellholes	Allow for the mechanical drilling of wellholes to depth and technical specification outlined in the technical specifications	1.1.4	Site Engineer, Site Supervisor, Project Team
1.1.6	Casing of boreholes	Instillation of 150mm perforated schedule 26 PVC/HDPE vent pipes vertically installed into boreholes according to technical specifications	1.1.5	Site Engineer, Site Supervisor, Project Team
1.1.7	Installation of plastic drums vent pipes with appropriate filter media	Supply and secure into place metal drums filled with appropriate filter media approved by EPA and complies with technical specifications outlined by the project team.	1.1.6	Site Engineer, Site Supervisor, Project Team

Chart 12 Activity list (Source: S. Holder, 2024)

4.3.3 Define Activities

Activities were placed in order depending on their relationships

4.3.4 Estimated Activity Duration

Due to the nature of the work. This was done based on expert judgment, also factors such as size and scope of activities were taken into consideration to increase or decrease working hours.

4.3.5 Develop Schedule

Figure 6: Project Schedule (Source: S. Holder, 2023)

Figure 7 Critical Path (Source: Compiled by the Author, S. Holder, 2024)

4.3.6 Project Schedule Changes

As with many projects changes are inevitable. However, strict monitoring guidelines should be enforced to ensure the changes are necessary and does not negatively affect the project outcome. to update the schedule and managing changes to the schedule baseline. In order for this to be successful the project team should carefully monitor the project status by carefully observing potential changes on scope, schedule and cost should be identified. If the effects are with an acceptable limit, the project manager will approve the changes and provide a revised work schedule.

Additionally, The project manager managed and control the schedule based on the information received in a reporting period, utilizing the critical path method as the guide to complete the project on time. The critical path method helped the project team in determining the sequence in which tasks must be carried out, the shortest possible project duration, identify critical and non-critical task and aids in risk identification and mitigation. Based on an analysis done on the critical path, the critical tasks were identified and the necessary resources were allocated to ensure these tasks were completed as per schedule. Any delay occur on a critical task will result in a delay in the completion date for the project resulting to a change in the schedule.

The critical path was also used to identify which tasks has a float and can be delayed without affecting the overall timeline, which help the project team to better manage changes or issues such as risk identification and mitigation, foresee potential bottlenecks or delays and proactively mitigate these risks which will result in significant reduction in downtime and associated cost throughout the

project life cycle. The Critical path was regularly update and review to help identify potential issues early and keep the project on track.

4.4. Cost Management Plan

PMI (2017) defines Project Cost Management as "the processes involved in planning, estimating, budgeting, financing, funding, managing, and controlling costs so that the project can be completed within the approved budget" (p. 231).

4.4.1 Plan Cost Management

Estimating cost is an important process in project management as it is the basis for determining and controlling the project budget. As such, since the scope of works were clearly defined and information on past projects and standards outlined by the EPA were available. The cost of the project was estimated through expert judgement and the Bottom – Up estimation method.

Activity	Activity	Activity	Unit	Rate	QTY	Amount
ID	Name	Description				(GYD)
1.1.1	Preliminares	Insurances,	sum			4,291,400
		mobilization,				
		demobilization,				
		setting out of				
		works				
		according to				
		technical				
		specifications,				
		Quality				
		Control, Site				
		security.				
1.1.2	Site Clearing	Removing of	M2	500	48600	14580000
	and levelling	trees, topsoil				
		and levelling				
		project area as				
		outlined by				
		project team.				

Chart 13: Cost Estimates (Source: S. Holder, 2024)

1.1.3	Excavation	Excavation of	M3	1235	10000	12350000
		drains to design				
		levels outlined				
		by project team				
1.1.4	Construction	Construction of	M3	580	3000	1740000
	of berms	earthen berms				
	around vent	using suitable				
	pipes	excavated				
		material to a				
		design level				
		outlined by				
		project team				
1.1.5	Drilling	Allow for the	no	24	800000	19200000
	wellholes	mechanical				
		drilling of				
		wellholes to				
		depth and				
		technical				
		specification				
		outlined in the				

		technical				
		specifications				
1.1.6	Casing of	Instillation of	no	24	40000	960000
	boreholes	150mm				
		perforated				
		schedule 26				
		PVC/HDPE				
		vent pipes				
		vertically				
		installed into				
		boreholes				
		according to				
		technical				
		specifications				
1.1.7	Installation	Supply and	m	364	45000	16380000
	of plastic	secure into				
	drums vent	place metal				
	pipes with	drums filled				
	appropriate	with				
	filter media	appropriate				
		filter media				
	1	1	1	1	1	1

	approved by	
	EPA and	
	complies with	
	technical	
	specifications	
	outlined by the	
	project team.	
Sub Total		\$ 84,081,400

10% Contingency

Total \$

\$ 8,408,140

\$ 92,489,540

4.4.2 Determine Budget

This was done in relation to the project schedule and each task was allocated a specified amount of money that will spread throughout the project until project completion or completion of the task.

4.4.3 Control Cost

The Control Costs involves the monitoring of actual costs against the cost baseline and managing project changes to the cost baseline. The integrated change control process is employed to review all change request and allow the project manager to detect cost variances early and take necessary corrective actions to bring the project back on budget. This is done to ensure the project is completed within budget and avoid cost overruns.

Earned Value Management will be used by the project manager to internally compare the performance baseline to the actual cost performance on a monthly basis. This will be done to assess the magnitude of the variation relative to the original cost baseline of the project's Scope, Cost and Schedule using indicators such as Schedule Variances (SV), Cost Variances (CV), Schedule Performance Index (SPI) and Cost Performance Index (CPI). These will be monitored to determine if the actual project cost, scope and schedule are executed as planned. If results indicate a negative CV and or a CPI of less than 1.0, it is unfavorable and requires a immediate financial review to identify the causes and implement mitigation measures to improve these areas to bring the financial aspect of the project in line. This data will be represented on a S-Curve in a report format showing a visual representation of variance and the difference between planned value, actual cost and earned value which gives all stakeholders a clear understanding of how the project is performing.

Figure 8 Project (Source: S. Holder 2024)

Note. From Researchgate.net, Copyright 2023.
4.4.4 Cost Variance Response

Cost Variance Response indicates if the project is under or over its financial limits. If the difference exceeds acceptable financial limits of the project, the project manager may identify the cause and propose options to bring the project back on budget.

Performance Measure	Green Condition	Yellow Condition	Red Condition		
Schedule Performance Index (SPI)	Between 0.95 and 1,05	Between 0.8 and 0.9 or Between 1.1 and 1.2	Less than 0.8 or Greater than 1.2		
Cost Performance Index (CPI)	Between 0.95 and 1,05	Between 0.8 and 0.9 or Between 1.1 and 1.2	Less than 0.8 or Greater than 1.2		
Indicators		Response			
Green (Good State)	Project Manager anaylsis sho	ws that cost performance	are on track.		
Yellow (Closely Monitor)	Project Manager to perform analysis and strengthen cost control and expendeture				
Red (Coreective action required)	Project Manager to perform project cost performance overview, detecorrective actions and present to Sponsor for approval				

Chart 14: Cost Variance Response Process (Source: S. Holder, 2024)

4.4.5 Cost Change Control Process

The cost change control process followed the established project change request

Process outlined by the project team. The project sponsor approved changes once they are justified

and add value to the Project

4.5 Quality Management Plan

This section details the processes for integrating the organization's quality policies in order to meet stakeholder objectives. It expands on the aspects of planning, managing and controlling project and product quality requirements (PMI, 2017).

4.5.1 Quality Management Approach

The quality management approach used for this project was aimed at ensuring the proper regulations, standards and procedures and technical specifications outlined by the various regulatory entities are followed to achieve the project specified deliverables. In order to do this, quality requirements were outlined, metrics specified and means of verification are stated. This allows for clarity of the process and accountability.

Stakeholder Prioritization	Government of Guyana	Ministry of Local Government	Residents	HBSL Employees	Contractors	Row Total	Relative Decimal Value
Government of Guyana		5	1/10	1/10	10	15.2	0.18
Ministry of Local Government	1		1/10	1/10	10	11.2	0.13
Residents	10	10		1	10	31	0.37
HBSL Employees	10	10	1		5	26	0.31
Landfill Operaters	1/10	1/5	1/5	1/5		0.7	0.01
	84.1						

Chart 15: Stakeholder Prioritization (Source: S. Holder 2024)

The customer level of importance is listed below:

- Residents
- HBSL Employees
- Government of Guyana
- Ministry of Local Government
- Landfill Operators

4.5.3 Quality Requirements

- Sustainable
- Environmentally Friendly

- Regulatory Compliant
- Design Compliant
- Within Budget
- Structurally Sound

4.5.4 Requirements Prioritization

Chart 16: Government of Guyana Requirement Prioritization (Source: S. Holder 2024)

Requirement Prioritization (GOG)	Sustainable	Environmentally Friendly	Regulatory Compliant	Design Compliant	Within Budget	Structurally Sound	Row Total	Relative Decimal Value	
Sustainable		1	1/5	5	5	1	12.20	0.31	
Environmentally Friendly	10		1	5	10	1/10	26.13	0.67	
Regulatory Compliant	1/5	1		10	5	1	17.2	0.44	
Design Compliant	1/5	1/10	1/10		5	5	10.4	0.27	
Within Budget	1/5	1/5	1/5	1/5		1/10	0.9	0.02	
Structurally Sound	1/10	1/10	1/10	5	10		15.3	0.39	
	Grand Total								

Requirement Prioritization (MLGRD)	Sustainable	Environmentally Friendly	Regulatory Compliant	Design Compliant	Within Budget	Structurally Sound	Row Total	Relative Decimal Value
Sustainable		1	1	5	1	5	13	0.24
Environmentally Friendly	1		1	5	1	1/5	8.2	0.15
Regulatory Compliant	1	1		10	1	1/5	13.2	0.25
Design Compliant	1/5	1/10	1/10		1	1/5	1.6	0.03
Within Budget	1	1	1	1		1/5	4.2	0.08
Structurally Sound	1	1	1	5	5		13	0.24
	53.2							

Chart 17: Ministry of Local Government and Regional Development Requirement Prioritization (Source: S. Holder 2024)

Chart 18: Residents Requirement Prioritization (Source: S. Holder 2024)

Requirement Prioritization (Residents)	Sustainable	Environmentally Friendly	Regulatory Compliant	Design Compliant	Within Budget	Structurally Sound	Row Total	Relative Decimal Value	
Sustainable		1/5	1/5	10	10	1/10	20.5	0.18	
Environmentally Friendly	5		5	10	10	1/5	30.2	0.27	
Regulatory Compliant	10	1		10	10	1/5	31.2	0.28	
Design Compliant	1/5	1/10	1/10		10	1/10	10.5	0.09	
Within Budget	1/5	1/10	1/10	1/10		1/10	0.6	0.16	
Structurally Sound	1	1	1	5	10		18	0.16	
	Grand Total								

Requirement Prioritization (HBSL Employees)	Sustainable	Environmentally Friendly	Regulatory Compliant	Design Compliant	Within Budget	Structurally Sound	Row Total	Relative Decimal Value
Sustainable		1	1/5	1/10	10	1	12.3	0.17
Environmentally Friendly	1		1	1	10	1	14	0.19
Regulatory Compliant	5	1		10	10	1	17	0.24
Design Compliant	1/5	1/10	1/10		10	1/10	10.2	0.14
Within Budget	1/10	1/10	1/10	1/10		1/10	0.5	0.01
Structurally Sound	1	1	1	5	10		18	0.25
	72							

Chart 19: Haags Bosch Sanitary Landfill Requirement Prioritization (Source: S. Holder 2024)

Chart 20: Contractors Requirement Prioritization (Source: S. Holder 2024)

Requirement Prioritization (Contractors)	Sustainable	Environmentally Friendly	Regulatory Compliant	Design Compliant	Within Budget	Structurally Sound	Row Total	Relative Decimal Value
Sustainable		1/5	1/5	1/10	1/10	1/10	1.1	0.01
Environmentally Friendly	5		1/5	1/10	1/10	1/10	5.5	0.06
Regulatory Compliant	10	5		1/10	1/10	1/10	15.3	0.17
Design Compliant	10	10	10		1	1	32	0.36
Within Budget	10	5	1	1		1	18	0.20
Structurally Sound	10	10	5	1	1		17	0.19
Grand Total								

Stakeholder-Weighted Requirement Prioritization	Government of Guyana	Ministry of Local Government	Residents	HBSL Employees	Contractors	Row Total	Relative Decimal Value
Sustainable	0.057	0.033	0.068	0.053	0.000	0.210	0.15
Environmentally Friendly	0.122	0.021	0.100	0.060	0.001	0.303	0.21
Regulatory Compliant	0.080	0.033	0.104	0.073	0.001	0.291	0.20
Design Compliant	0.048	0.004	0.035	0.044	0.003	0.134	0.09
Within Budget	0.004	0.011	0.221	0.002	0.002	0.240	0.17
Structurally Sound	0.071	0.033	0.060	0.077	0.002	0.242	0.17
		Grand Total				1.421	

Chart 21: Stakeholder-Weighted Requirement Prioritization (Source: S. Holder 2024)

Based on the requirements prioritization, the level of significance are as follows:

- Environmentally Friendly
- Regulatory Compliant
- Within Budget / Structurally Sound
- Sustainable

4.5.5 Roles and Responsibilities

Chart 22: Project Quality Roles and Responsibilities (Source: S. Holder 2024)

Role	Responsibility
Government of Guyana	Provide scope, time, and budget requirements and
	limitations
Ministry of Local Government and	1. Define Quality Standards
Regional Development	2. Determine if deliverables meet the
	standards and expectation
	3. Provide framework, tools, and techniques
	for quality assurance and control
Project Manager	Manage, monitor and evaluate the implementation
	and development processes
Contractor	Execute project in accordance to guidelines,
	Quality standards outlined by relevant stakeholders
Residents	Provide feedback, Identify problems

4.5.6 Factors Related to Quality

Factor	Factor Definition
Air Quality	Services established by the project provided cleaner air quality by reducing landfill gas emissions directly into the atmosphere.
Keep Project Within Budget	Ensure all quality standards and specifications were met to provide a completed quality product at time of deadline
Satisfied Stakeholders	End users were satisfied with the improve air quality from the landfill
Keep Project on Schedule	Provide adequate supervision to ensure that handling was done in a timely manner

4.5.7 Quality Metrics

For this project the quality metrics was aimed at measuring the attributes defined for project quality. Quality metrics can also help you evaluate the effectiveness of your quality management process and make improvements where needed.

Quality Objective	Metric	Metric Definition	Expected Outcome/ Results	Measureme nt Frequency	Responsibili ty
Projected Completed Within Budget	Allocated Sum	Project Should be completed within allocated budget without jeopardizing the quality requirement s	Scope of works to be completed with budget allocation	Contentious	Ministry of Local Government and Regional Developme nt
Specificatio ns	Technical Specificatio ns	Specificatio ns outlined by the EPA will be followed through the project duration	Full compliance with specificatio ns	Contentious	Contractor
Measure quality and effectivenes s of project	Improved air quality	% of landfill gas captured	90% min of Landfill gas captures	Contentious ly after completion of project	Ministry of Local Government and Regional Developme nt

Chart 24: Metrics Quality and Baseline Quality (Source: S. Holder 2024)

Quality of Materials	Filter median	Should be of required size and thickness	I improve filtration of landfill gas	Contentious monitored throughout project	Contractor / Ministry of Local Government and
					Regional Developme nt

4.5.8 Quality Activities

These are the activities that will be carried out from commencement to completion to project.

Deliverable	Requirements	Manage and Control	Frequency	Responsible
Topographic Surveys	Technical	Manage	At the	Contractor
	Specification		Beginning	
		Control	and Ending	MLGRD
			of project	
Wells Drilling	Technical	Manage	Monthly	Contractor
	Specification	Control	Monthly	MLGRD
Vent Pipes	Technical	Manage	Monthly	Contractor
Installation	Specification	Control	Monthly	MLGRD
Filter media	Technical	Manage	Monthly	Contractor
	Specification	Control	Monthly	MLGRD
Clay Covering	Technical	Manage	Monthly	Contractor
	Specification	Control	Monthly	MLGRD
Improvement to	90% of project	Manage	Monthly	Contractor
Sustainability	materials to be	Control	Monthly	MLGRD

Chart 25: Quality Activity Matrix (Source: S. Holder 2024)

locally		
procured		

4.5.9 Quality Document

Site Visit Report

Weather:	Time:
	Weather:

Prepared by:

4.5.10 Continuous Improvement Plan

Chart 26: Continuous Improvement Chart (Source: S. Holder 2024)

1. Collect data, identify and define challenges, analyze findings and determine the underlying causes of landfill gas emission.

2. Facilitate structured meetings/sessions to generate ideas how to address identified failures/challenges.

3. Facilitate sessions with key stakeholders discuss challenges and possible solutions.

4. Prioritized implementation of quality improvement ideas resulting from meetings/ sessions.

5. Develop Quality improvement plan accordingly

A continuous improvement plan is an iterative process implemented to determine the effectiveness of construction methodologies throughout the project which will ultimately improve the effective and quality of project work. As, such, it is recommended that the assessment of the cumulative impacts of landfill gas must be done involving all stakeholders to eliminate substantial gaps in the requirements selection process to create a sustainable design for these projects. Proper quality monitoring should also be implemented since landfill gas can cause harm not only to landfill staff, but also to surrounding residents with underlying illnesses.

4.6 **Resource Management Plan**

Resource management plan includes the processes that identifies, acquires and manages the resources needed for the successful completion of the project. These processes ensure that the right resources will be available for the project manager and team at the right time (PMI, 2017, p 307).

4.6.1 Resource Management Approach

The Resources Management Plan is a tool which will assist in the supervision and dispensation of the human resources, financial resources, material resources, equipment resources etc, through the duration of the project to achieve the greatest value. It will also identify the various roles and responsibilities of each team member along with their duties.

4.6.2 Roles and Responsibilities

Figure 9 Project Team Organizational Structure (Source: S. Holder 2024)

Roles	Responsibilities
Project Manager	Planning, Scheduling, Upgrading of Project Documents and
	interacting/coordinating with stakeholders
Site Engineer	Oversight and provide technical supervision
Surveyor	Assist site engineer with levels, bench marks etc
Office Manager	Provide administrative assistance to project team
Office Assistant	Assist Office Manager with day-to-day duties
Finance Manager	Monitor and controlling or project spending
Office Assistant	Assist Finance Manager with day-to-day duties
Site Supervisor	Oversight trade workers and implement daily site activities
Surveyor Technician	Assist Surveyor with day-to-day duties
Trade Foreman	Oversight Labourers and provide day to day assistance to Site Supervisor
Laborers	Assist trade foremen with day-to-day duties

Chart 27 Project Resource Management Roles and Responsibilities (Source: S. Holder 2024)

	r			r							
Task Name	Project Manager	Site	Surveyor	Surveyor	Office Manager	Office	Finance Manager	Finance	Site Supervisor	Trade	Labourers
Preliminaries	R	C	С	I	C	I	I	I	I	I	Ι
Topographic and Engineering Surveys	R	R	R	Ι	Ι	Ι	Ι	Ι	А	А	А
Clearing of Site	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Grading, Shsaping and Compacting of Site	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Well Drilling	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Instillation of Vent Pipes	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Clay Covering	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Installation of Filter Media	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Access to Site	R	R	С	Ι	Ι	Ι	Ι	Ι	А	А	А
Planning	R	С	С	Ι	С	Ι	С	Ι	С	Ι	Ι
Scheduling	R	С	С	Ι	С	Ι	С	Ι	С	Ι	Ι
Reports	R	С	С	Ι	С	Ι	С	Ι	С	Ι	Ι
	R = Res	ponsible		A = Acc	ountable		C = C	Consult		I = I	nform

Chart 28 Responsibility Assignment Matrix (Source: S. Holder 2024)

4.6.3 Acquisition of Team Members

The team was comprised of experienced personnel from various disciplines with years of experience. These personnel from within the organization will fill key positions such Project Manager, Site Engineer, Site Supervisor, Office Manager and Finance Manager. For those areas that may require a new staff, a fair process was followed to acquire the most suitable candidate. Vacancies will be advertised and equal opportunities will be provided for those who may apply for the positions such as Office Assistant and clerical staffs. Trade works will be the responsibility of the executing contractor to establish contracts between Global Contractors and sub-contractors.

4.6.4 Team Development

This was a continuous process throughout the duration. Daily site meetings was conducted to resolve any issues or concerns that may arise. Further, New staff was guided by the more experience staff to foster improvement as a team.

4.6.5 Team Safety and Welfare

Occupational health and safety were a very important aspect on every site. This was the responsibility of every staff. Staff members ensured that each other is thoroughly attire in safety gears (PPE) and are following the necessary procedures and code of practice outlined by the site engineer and site supervisor.

4.6.6 Recognition and Rewards

There were financial incentives for completion of project ahead of schedule. Also, financial incentives were issued at a pre-determined point of each project for accident-free worksite. Each team member will be rewarded for their performance by way of monetary reward if the final deliverable is delivered as specified and under the project budget. Additionally, several social

activities will be planed for team members throughout the year to build employees' morale and camaraderie.

Recognition		Presented			
Event	Goal	by	Recipient	Frequency	Reward
Birthday		Social			Gift Card
Celebration	Increase Morals	Committee	All Employees	Yearly	and Money
				3,5,10,15	
Work				Years	Gift Card
Anniversary	Celebrate Loyalty	HR	All Employees	Milestones	and Token
	Motivate High	Permanent			
Yearly Bonus	Performance	Secretary	All Employees	Yearly	Monetary
Celebration of					
Early	Motivate High	Project	Selected		
Completion	Performance	Manager	Employee/Team	Quarterly	Monetary

Chart 29: Reward and Recognition (Source: S. Holder 2024)

4.6.7 Physical Resources

A maintenance schedule was established to ensure that all equipment is in full working order and to prevent downtime. Additionally, materials were kept in storage in accordance with manufacturer storage specifications and monitored by a materials checker daily.

4.7 Communication Management Plan

The communication management plan provided a structured approach for communication among stakeholders for effective communication/project coordination throughout the life cycle of the project.

4.7.1 Audiences

The major audiences within the project were as follows:

- The Government of Guyana
- Ministry of Local Government and Regional Development
- Residents
- Contractors
- Landfill Operators
- Landfill Staff

4.7.2 Communication Delivery Methods and Technologies

For this project the primary modes of communication was face to face meetings, letters, emails,

phone calls, WhatsApp messages, Presentations and zoom calls.

Project: Nat	Project: Name LANDFILL GAS MANAGEMENT PROJECT					
AT HAAGS BOSCH SANITARY LANDFILL				Revision Dat	e	
Project Number				Document N	umber	
Project Manager Project archit			ect	Lead Assistant		
Samuel Hold	older xxx		XXX			
Audience	Communicator	Content	Deliverable	Medium	Frequency	
Environme ntal Protection Agency	Project Manager	Project Progress Issues Management Solutions	Project briefs, Summary Reports, Conclusions, Recommendatio ns	Face to Face	Monthly	

Chart 309: Communication Matrix (Source: S. Holder 2024)

		Environment al Impact			
Governme nt Agencies	Project Manager	Project Progress, National Impact, Avenue of Collaboratio n	Project briefs, Summary Schedules, Budgetary summary, Reports, Project Charter	E-Mails, Video Conferencin g, Face to Face	As Required
MLGRD	Project Manager	Project Progress Issues Management Solutions Financials Change Request Impact	Project Brief, Project reports, request for information	Face to Face	Monthly
Local Communit y	Project Manager, Contracted media agency	Project progress and benefits	Local culture information, Project progress. Impacts, Solutions	Face to Face	Monthly
HBSL Employees	Project Manager	Project progress issues, Team Development	Project reports, Issues, Solutions	Face to Face & Emails	Weekly or as Required
Landfill Operators	Project Manager	Project Information Issues Profiles	Correspondence, Meeting Minutes	Face to Face & Emails	As Required

4.7.3 Communication Escalation Processes

Project escalation refers to the process of communicating project issues or concerns to the project team's hierarchy to resolve the issues efficiently.

Role	Triggers When
Project Manager	Delay in Approvals Delays with required documents
Government of Guyana	Delay response from MLGRD
Ministry of Local Government	Delay response from contractor
Landfill Operator	Approvals from oversight proceed

Chart 31: Escalation Chart (Source: S. Holder 2024)

4.7.4 Monitors Communication

This process ensured the efficient and effective flow of communication throughout the lifecycle of the project in order to ensure the information needs of the project Stakeholders are met. Additionally, it provided a platform to voice any issue/concerns stakeholders may have.

Communication Purpose		Medium	Frequency	Audience
Project team meetings	Coordination of project activities	Meeting	Weekly	MLGRD Project team, Contractor
Technical Meetings	To make decisions on technical aspects of the project	Meeting	Fortnightly	MLGRD Project team, Contractor
Monthly Project Status update	Project updates (works completed, project expenditure to date, balance etc)	Meeting	Monthly	GOG, MLGRD Project team, Contractor & Stakeholders
Project status report	Project status updates	Email	Monthly	GOG, Stakeholders
Request for information	Request for project information	Email	As needed	GOG, MLGRD Project team, & Stakeholders

Chart 32: Communication Matrix (Source: S. Holder 2024)

4.8 Risk Management Plan

Risk management is the process of identifying, assessing and controlling the various risk factors that may occur on projects. These may have a positive or negative effect on the project's overall objectives, to reduce this, the implementation of resources best to identify, manage and mitigate significant risks.

4.8.1 Roles and Responsibilities

Roles	Responsibilities
Project Sponsor	Approve or Deny changes in an effort to mitigate risks
Project Manager	Create Risk Register, identify new Risk and Opportunities,
	Evaluate the probability of potential risks and identify new risks
	and opportunities.
Project Team	Identify Risk and response strategies
Site Supervisor	Evaluate and document the response actions
Trade Foreman	Monitor Risk

Chart 33: Proj	iect Risk Roles	and Responsibilitie	es (Source: S	. Holder 2024)
Chartering	COULTING INDICS	und itesponsionner		, 1101401 2021

4.8.2 Identify Risk

Figure 11 Project Risk Breakdown Structure (Source: S. Holder 2024)

				(+/-) Impact on				
				Project Objectives				
				Scale Probability				
		Time	Cost	Quality				
Very		> 6		Very Significant Impact on overall Cost				
High	>70%	months	>\$1M	and Time				
	51% -	3 - 6		Significant Impact on overall Cost and				
High	70%	Months	\$501 - \$1 M	Time				
	31% -	1 -3	&101K -					
Medium	50%	Months	\$500K	Some Impact on overall Cost and Time				
	11% -	1 - 4	\$50K -					
Low	30%	Months	\$100K	Minor Impact on overall Cost and Time				
Very	1% -							
Low	10%	1 Week	<\$ 50K	Minor Impact on Cost and Time				
		No						
Nil	<1%	Change	No Change	No Change to Cost and Time				

Chart 33 Probability and Impact Scale (Source: R. Nurse, 2023)

4.8.3 Probability and Impact Matrix

Red (very high risk/very significant): A very high risk with a score more than 0.29 are

critical and top priorities, they can present urgent and/or permanent threat of loss which can be unrecoverable as such mitigative measures should be put in place

Orange (high risk/significant): For risks within the range of high risks, which is between

0.11 to 0.28. These risks are not as significant as the risks within "red" range. However, systems

should be put in place to ensure the impacts are minimized.

		Threats					Oppertunities				
Very High 0.9	0.05	0.09	0.18	0.36	0.72	0.72	0.36	0.18	0.09	0.05	Very High 0.9
High 0.7	0.04	0.07	0.14	0.28	0.56	0.56	0.28	0.14	0.07	0.04	High 0.7
Med 0.5	0.03	0.05	0.1	0.2	0.4	0.4	0.2	0.1	0.05	0.03	Med 0.5
Low 0.36	0.02	0.03	0.06	0.12	0.24	0.24	0.12	0.06	0.03	0.02	Low 0.36
Very Low 0.1	0.01	0.01	0.02	0.04	0.08	0.08	0.04	0.02	0.01	0.01	Very Low 0.1
	Very Low	Low	Moderate	High	Very High	Very High	High	Moderate	Low	Very Low	
	0.05	0.1	0.2	0.4	0.5	0.5	0.4	0.2	0.1	0.05	
		NEGATIVI	E IMPACT					POSATIV	E IMPACT		

Figure 12 Probability Impact Matrix (Source: S. Holder 2024)

Cod e	Cause	Risk Description	Reference	Proba bility	Impa ct	Ran k (PxI)	Respo nse	Preventati ve Measures
RA1	Poor Workm anship	Poor Quality of Construction	During project lifecycle	0.5	0.8	0.4	Mitigat e	Proper monitoring to increase quality
RA2	Ambigu ity	Noncomplian ce to technical Specifications	Project Planning	0.3	0.8	0.24	Mitigat e	Provide clear and concise in project document
RA3	In climate weather conditio ns	Extreme Rain	During project lifecycle	0.9	0.4	0.36	Mitigat e	
RA4	Third Party Issues	Delay by Suppliers	During project lifecycle	0.5	0.4	0.2	Mitigat e	Provide rigid contract guidelines
RA5	Over Allocati on	Lack of Support from Leadership	During project lifecycle	0.5	0.8	0.4	Mitigat e	increase communica tion channels with leaders.
RA6	Late Orderin g	Late delivery of resources	During project lifecycle	0.5	0.4	0.2	Mitigat e	Strict Procuremen t Manageme nt
RA7	Other Commit ments	Lack of commitment	During project lifecycle	0.3	0.8	0.24	Mitigat e	Provide clear and concise activities for document

Chart 34 Risk Register (Source: S. Holder, 2024)

RA8	Ambigu ity	Scope Creep	During project lifecycle	0.5	0.4	0.2	Mitigat e	Provide clear and concise in project document
RA9	Poor Coordin ation	Falling Behind Schedule	During project lifecycle	0.9	0.4	0.36	Mitigat e	Rigid Time Manageme nt
RA1 0	Price Fluctuat ion	Increase Project Cost	During project lifecycle	0.7	0.4	0.28	Mitigat e	Implement clause for cost variance in contract document
RA1 1	New Team	Team Conflicts	During project lifecycle	0.7	0.4	0.28	Mitigat e	weekly meetings to coordinate activities
RA1 2	Unclear Safety Paths	Animals in the working area	During project lifecycle	0.3	0.05	0.01 5	Mitigat e	Singe and hording
RA1 3	Lack of PPE	Dangerous work terrain	During project lifecycle	0.5	0.2	0.1	Accept	Strict PPE Guidelines
RA1 4	Long Workin g Hours	Poor lighting	During project lifecycle	0.7	0.1	0.07	Accept	Work during well-lit periods
					Projec t Risk High		0.24	

4.9 **Procurement Management Plan**

The purpose of the Procurement Management Plan was to provide a guideline which outlines the procurement activities needed to acquire the necessary goods, services, and resources you'll need to complete your project objectives. It also included the management and procurement processes required to develop the necessary contract types that will be used throughout the contract period.

4.9.1 Procurement Management Approach

This was a joint effort between the Project Manager, the Finance Manager and the Office Maranger.

Roles	Responsibilities
Project Manager	Assign resources
	Approve Payments
	Preparation of Bills of Quantities
Office Manager	Record Keeping
	Preparation of bid/contract Documents
Finance Manager	Financial Record Keeping
	Payments

Chart 42: Procurement Roles and Responsibilities (Source: S. Holder, 2024)

4.9.2 Procurement Management Approach

Item	Description	Units	Quantity	Justification
1	Signage	No	5	Security
2	Hording	ft	1300'	Security
3	Water tank	No.	3	Potable Water and Working Water Storage Tank
4	HDPE Pipes	m	346	For vent in well
5	Gravel	Cu.m	200	Pipe reinforcement
6	Pipe Bends	No	24	Maneuver the pipes in different directions
7	PVC SDR Coupling	No.	24	Joining PVC Pipes
8	Fabricate Mild Steel Casing	No.	24	Lining oof well holes
9	Installation of metal drums	No	24	Provide support to vent pipes
10	Filter Media	Cu.m	24	Filter escaping gas
11	Geo textile Fabric	Sq.m	24	Filter media separator
12	Sand	Cu.m	360	Access Construction
13	Crusher run	Cu.m	246	Access Construction

Chart 43 Bill of Materials (Source: S. Holder, 2024)

4.9.3 Contract Types

Since many of the variables are known, a Fixed Price Contract was utilized for the execution of this project. Clear and concise supporting documents were provided to contractors to aid in the setting of bid prices.

4.9.4 Evaluation Criteria

Vendors must be able to meet the required criteria listed below.

Vendor criteria are as follows:

- Provide High Quality Standard
- Acceptable pricing
- Provide list of experience in similar projects
- Provide list of Required Equipment
- Execute project within the specified timeline

4.9.5 Procurement Change Control Process

Procurement change requests was submitted with relevant justification top the project manager for review. This was assessed to identify the potential impacts on the Project then followed by an approval or rejection. The office manager then updated the necessary documentation.

4.10 Stakeholder Management Plan

The Stakeholder Management Plan helped the project team to identify key stakeholders, determine various engagement strategies in order to manage the project in an effective, efficient and sustainable manner to satisfy all stakeholder objectives.

4.10.1 Stakeholder Identification

Projec t Name Main Spons or	Construc Landfil Managemen Governr Guya	ction of ll Gas nt Facility nent of ana	LANDFILL C STA	GEMENT PRO ANALYSIS	JECT -	
ID	Stakehold ers	Function al Areas	Roles - Responsibility	Main Expectati on	Major Requireme nts	Impact
1	Governme nt of Guyana	Sponsor	Financial Sponsor	Improved Air Quality	Structurally Sound and functional	High/Hi gh
2	Ministry of Local Governme nt	Supervis ory	Project Implementatio n	Timely Disbursem ent of Funds	Specificatio ns are followed	High/Hi gh

Chart 37: Stakeholder	Register ((Source: S	. Holder,	2024)
		`	,	

3	Residents	End User	User of Product/Custo mers	Keep Informed	Structurally Sound and functional	High/Hi gh
4	HBSL Employees	End User	User of Product/Custo mers	Keep Informed	Structurally Sound and functional	Low/Hi gh
5	Landfill Operators	End User	User of Product/Custo mers	Keep Informed	Structurally Sound and functional	Low/Hi gh

Figure 13: Stakeholder Power/Interest Matrix (Source: S. Holder 2024)

4.10.2 Stakeholder Management assessment Matrix

The stakeholder management assessment matrix assesses and categorizes stakeholders based on their level of interest and Power. It provided a structured approach to understanding stakeholder dynamics and tailoring engagement strategies accordingly to meet each stakeholder needs resulting in increased project support. The current level of engagement was denoted by "C" and the desired level is denoted by "D".

ID	Stakeholders	Unaware	Resistant	Neutral	Supportive	Leading
1	Government of Guyana					CD
2	Ministry of Local Government					CD
3	Residents					CD
4	HBSL Employees				CD	
5	Landfill Operators				CD	

Chart 38 Stakeholder Assessment Matrix (Source: S. Holder, 2024)

Chart 39: Stakeholder Engagement Matrix (Source: S. Holder, 2024)

ID	Stakeholders	Project Phase	Engagement Approach	Engagement Tools	Frequency
1	Government of Guyana	All	Consult, Collaborate	Letters, Email, Meetings, WhatsApp	Very Frequent
2	Ministry of Local Government	All	Consult, Collaborate	Letters, Email, Meetings, WhatsApp	Very Frequent
3	Residents	Planning	Dialogue	Meetings	Less Frequent
4	HBSL Employees	Planning	Dialogue	Meetings	Less Frequent
5	Landfill Operators	Planning	Dialogue	Meetings	Frequent

5 CONCLUSIONS

1. A Project Charter was created to outline the details of the project parameters along with all stakeholders, constrains and assumptions for the project. These details were provided and approved for commence of the FGP.

2. A scope management plan was created to guide the project team along with the necessary works to be done which will ultimately avoid scope creep.

3. The Schedule Management Plan was created to provide a set timeline for project the implementation and execution of project deliverables. The schedule also highlighted activity sequence and major milestones for project activities.

4. A cost management plan was created to guide project spending and timely release of project funds. It also provides a guide to the project team to ensure the project expenditure remains within budget.

5. A Quality Management Plan was created to ensure all deliverables and materials meet the necessary quality criteria and technical specifications outlined by the key stakeholders.

6. The resource management plan was established as a guide for the project management team to identify, acquire, and manage all the resources needed to complete the project within time, on budget and of high-quality standard.

7. The Communication Management Plan was developed to identify the ways in which the project communication was carried in order to foster a high level of stakeholder participation.

8. The Risk Management Plan was created to identify the potential risk that may occur during the project and provide strategies to mitigate the negative effects on the project.

108
9. The Procurement Management Plan was created to manage the purchasing and goods and services that the project requires throughout its life cycle.

10. A Stakeholder Management Plan was created to identify all parties that would potentially be affected by the project. The plan also highlights the stakeholders' requirements which will be considered throughout the project cycle.

6 **RECOMMENDATION**

1. The Project Manager should interact with the various stakeholders to ensure that their concerns are heard and that they are being engaged and informed appropriately.

2. The project management team should use the project management methodologies, processes, tools, techniques, and activities defined in this document for each of the specific plans to complete the project.

3. The project management team should implement strict monitoring processes of the project execution strategy, follow the change management process, and ensure that the project is implemented according to the approved plan.

4. The Project Team should continually update and improve the integration of sustainable practices within the construction process.

5. Identified risks should be continuously monitored throughout the project by the project team and follow up on responses as outlined.

7 VALIDATION OF THE FGP IN THE FIELD OF REGENERATIVE AND SUSTAINABLE DEVELOPMENT

Landfill gas (LFG) is a natural byproduct of the decomposition of organic material in landfills which produces a potent greenhouse gas known as methane. Many landfill systems simply vent gas into the atmosphere without treatment before release. However, due to the environmental and human health effect of methane proper treatment should be done to mitigate the environmental effects of this gas. Mitigating methane emissions plays a major part in meeting the Paris greenhouse gas (GHG) reduction goals (Getting It Right to Reduce Methane Emissions, n.d.). Due to the lifespan and warming effect of methane which makes it a climate forcer, methane emissions mitigation is an urgent and we must act now to reduce the effects of global warming. The mitigating methane emissions from our landfill operations is an opportunity to enhance the environmental lifespan. Hence, contributing to the improvement of regenerative and sustainable development.

While environmental health is the initial motivation of this Project. The net results are the significant reduction of the methane emissions through the country which directly contributes to global warming and climate change. As stated in the previous chapter the reduction of these emissions, is directly related to improving regenerative and sustainable development.

BIBLIOGRAPHY

- Agency for Toxic Substances and Disease Registry. (2019). ATSDR Landfill gas primer -Chapter 2: Landfill gas basics. Centers for Disease Control and Prevention. https://www.atsdr.cdc.gov/HAC/landfill/html/ch2.html
- Agency for Toxic Substances and Disease Registry. (2019). ATSDR Landfill gas primer -Chapter 5: Landfill gas control measures. Centers for Disease Control and Prevention. https://www.atsdr.cdc.gov/HAC/landfill/html/ch5.html
- Booth, D. (2018). What are research methods? LibGuides. Newcastle University. https://libguides.newcastle.edu.au/researchmethods#:~:text=Research%20methods%20are %20the%20strategies
- Bruggers, J. (2021, July 13). Your trash is emitting methane in the landfill. Here's why it matters for the climate. NPR. https://www.npr.org/2021/07/13/1012218119/epa-struggles-to-track-methane-from-landfills-heres-why-it-matters-for-the-clima

Environmental Protection Department. (n.d.). Problems & solutions. Retrieved January 13, 2023, from https://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/msw_gasmgnt system.html Geoengineer.org. (n.d.). Landfill gas generation & collection.

https://www.geoengineer.org/education/web-class-projects/ce-176-environmentalgeotechnics/assignments/landfill-gas-generation-collection

IDEA. (n.d.). Adaptive vs. predictive: Is the end clear?

https://www.idea.org/blog/2005/12/02/adaptive-vs-predictive-is-the-end-clear/

International Gas Union. (n.d.). Getting it right to reduce methane emissions. Retrieved February 20, 2023, from https://www.igu.org/news/getting-it-right-to-reduce-methaneemissions/?cmp_id=19700276830&adg_id=&kwd=&device=c&gclid=Cj0KCQiArsefBh CbARIsAP98hXSn5UNXLkAkLXmS5bn5lyd7kxcja4mRyFN_neWq28JApiWGkCsB5kc aAg0_EALw_wcB

Library & Information Science Network. (2018, October 16). Sources of information. https://www.lisedunetwork.com/sources-of-information/

Ministry of Local Government and Regional Development. (n.d.). About us. https://mlgrd.gov.gy/about-us/

Open University. (2017). Writing your community profile report and moving on to small-scale research: Research objectives.

https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=231§ion=8.6.2

- Project Management Institute. (2017). A guide to the project management body of knowledge (PMBOK® Guide) (6th ed.). Project Management Institute.
- Project Management Institute. (2020). What is project management? Project Management Institute. https://www.pmi.org/about/learn-about-pmi/what-is-project-management

Project Management Institute. (2021). A guide to the project management body of knowledge (PMBOK® Guide) - Seventh edition. Project Management Institute, Inc.

Project Management Office. (n.d.). Project definition. University of Chicago. https://pmo.uchicago.edu/project-definition-and-initiation/

Project Management Institute. (n.d.). PMBOK® Guide's PM areas - Produce an infant activity gym. Project Management Institute. https://www.pmi.org/learning/library/pmbok-guidepm-knowledge-areas-6703

Science Direct. (n.d.). Landfill management. https://www.sciencedirect.com/topics/earth-andplanetary-sciences/landfill-management

University of Minnesota Crookston. (2015, July 15). Primary, secondary, and tertiary sources. University of Minnesota. https://crk.umn.edu/library/primary-secondary-and-tertiarysources

- Usmani, F. (2021, September 2). Assumptions and constraints in project management. PM Study Circle. https://pmstudycircle.com/assumptions-and-constraints-in-project-management/
- U.S. Environmental Protection Agency. (2019). Basic information about landfill gas. U.S. Environmental Protection Agency. https://www.epa.gov/lmop/basic-information-aboutlandfill-gas
- Waste Management. (n.d.). Landfill gas management. Austin Community Landfill. Retrieved January 13, 2023, from https://austincommunitylandfill.wm.com/environmentalprotection/landfill-gas-management.jsp

TheFreeDictionary.com. (n.d.). Information source.

https://encyclopedia2.thefreedictionary.com/Information+Source

APPENDICES

Appendix 1: FGP Charter

CHARTER OF THE PROPOSED FINAL GRADUATION PROJECT (FGP)

1. Student name

Samuel Linden Holder

2. FGP name

Project Management Plan for Landfill Gas Management Project at Haags Bosch Sanitary Landfill, Guyana, South America

3. Application Area (Sector or activity)

Environmental

4. Student signature

& stulde

5. Name of the Graduation Seminar facilitator

Professor Carlos Brenes Mena

6. Signature of the facilitator

7. Date of charter approval

February 26, 2023

8. Project start and finish date

January 15, 2023 July 9, 2023

9. Research question

What are the factors that must be considered to ensure the design/construction/implementation of gas management facilities are done in an environmentally friendly manner.

10. Research hypothesis

The design/construction/implementation of gas management facilities can be done in accordance with guidelines outlined by the environmental protection agency which will aid in the mitigation of landfill gas migration while facilitating maximum landfill gas collection.

11. General objective

To develop a Project Management Plan, according to the standards outlined by the Project Management Institute (PMI), to manage the design/construction/implementation of a Landfill Gas Management Facility at Haags Bosch Sanitary Landfill, Guyana, South America

12. Specific objectives

12. To develop a Project Charter for the landfill project

13. To develop a sustainable scope management plan to establish project deliverables.

14. To develop a schedule management plan as a guide to the project manager to complete the project within an established timeframe.

15. To develop a cost management plan to incorporate all project expenditures and the efficient allocation of finance.

16. To develop a quality management plan to outline the acceptable standards of the project.

17. To develop a resource management plan to ensure the availability of the adequate resources throughout the project duration.

18. To develop a communication management plan to establish the necessary strategies which will be used throughout the project.

19. To develop a risk management plan to identify, evaluate and plan for possible risk throughout the project.

20. To develop a procurement management plan to identify the procurement requirements that must be acquired for the project.

21. To develop a stakeholder engagement plan to identify an effectively engage stakeholders on project matters.

13. FGP purpose or justification

Haags Bosch Sanitary landfill was developed in February 2011 with the aim of provide a sustainable solution to the solid waste collection and disposal problems in communities along the east bank, west bank, west coast and Georgetown. To date, the increase of garbage influx has increased significantly due to development in all sectors seeing the closure of cell one and the development and usage of a second cell to accommodate the increase influx of garbage.

The initial development of the landfill was done in accordance to specifications outlined by the Environmental Protection Agency (EPA), considering buffers, waterways etc. However, due to the rapid development in the housing industry, these lands have been developed into various community consisting of approximately 1000 household which are now being affected by odors emitting from the landfill.

The steady complains of discomfort by residents living around the landfill has become a major concern to the Government of Guyana since this can lead to negative health conditions and environmental effects. The migration of landfill Gases continue to be a major challenge at Haags Sanitary Landfill, this project seeks to mitigate the migration of landfill gases into the atmosphere. Hence, reducing odors that affect residents in and around the landfill site, also mitigate the harmful emissions of greenhouse gases into the atmosphere which contributes to climate change.

The project management plan to be developed will serve as a guide to the project team and stakeholders throughout the lifecycle of the Landfill Gas Management Projects at Haags Bosch Landfill Site and at existing and developing sites around the country.

14. Work Breakdown Structure (WBS). In table form, describing the main deliverable as well as secondary, products or services to be created by the FGP.

1.1.7. Appendices 1.1.7.1. Bibliography 1.1.7.2. Schedule 1.2 Graduation Seminar Approval **Tutoring Process** 2.1. Tutor 2.1.1 Tutor Assignment 2.1.2. Communication/Feedback 2.2. Corrections if needed 2.3. Results 2.3.1 Signed Project Charter 1.3.2 Development of a Scope Management Plan 2.3.3 Development of a Schedule Management Plan 2.3.4 Development of a Cost Management Plan 2.3.5 Development of a Quality Management Plan 2.3.6 Development of a Resource Management Plan 2.3.7 Development of a Communication Management Plan 2.3.8 Development of a Risk Management Plan 2.3.9 Development of a Procurement Management Plan 2.3.10 Development of a Stakeholder Engagement Management Plan 2.4 Conclusions 2.5 Recommendations **Readers Review** 3.1 Reader 1 3.1.1 FGP Reading 3.1.2 Reader Report 3.2 Reader 2 3.2.1 FGP Reading 3.2.2 Reader Report **Corrections/Modifications** 4.1 Report 4.2 FGP Update 4.3 Review by Reviewers

- 5. Presentation to Board of Examiners
 - 5.1 Final Review

2.

3.

4.

5.2 FGP Grade Report

15. FGP budget

Proposed expenses for the project management plan for a Gas management Facility at
Haags Bosch Sanitary Landfill are as follows:
Construction of Gas Management FacilityGYD 84,081,400
GYD 8,408,140
GYD 92,489,840

16. FGP planning and development assumptions

• The project management plan can be completed within the timeframe outlined by the University

- All stakeholders approve and supports the project and its objectives.
- The project can be done using the best practices outlined in the Project Management Book of Knowledge (PMBOK® Guide).
- All health and safety protocols will be considered during construction

17. FGP constraints

Inclement weather can affect the construction process No lessons learned to follow since this project is first of its kind in Guyana Access to site location maybe oven grown with bushes Frequent increase in materials prices may impact the project budget

18. FGP development risks

3. The delay of all the necessary approval and permits will affect the timeline of the project.

4. If proper construction methodology is not employed, this can lead to further migration of landfill gasses into the environment

Deliverable	Finish nated date
1.1 FGP profile	January
1.1.1 Tutorials	March
1.2 FGP development	June 2023
1.2.1 Subsidiary Management Plans	May 2023
1.2.2 Conclusion	June 2023
1.2.3 Recommendation	June 2023
1.3 Readers review	July 2023
1.4 Board of examiners evaluation	July 2023

20. Theoretical framework

20.1 Estate of the "matter"

Odor from the landfill has been a age old problem in Guyana and has been increasing with the increased influx of garbage to landfills. As such the landfill gas management project seeks to relieve residents of the odor and to improve the health and environmental quality around the landfill

20.2 Basic conceptual framework

List of the basic concepts to be included in the document.

Examples: project management, LEED certification, clinics, sustainable design and construction, etc.

21. Methodological framework

Objective	Name of	Information	Research	Tools	Restrictions
	delivera	sources	method		
	ble				
To develop	Scope	• PMBO	Qualitative	Expert Judgement	Limited data since
а	Manage	Κ	Quantitative	Data Analysis	project is first of
sustainable	ment	Guide, 6th	Mixed	Meetings	its kind in Guyana
scope	Plan	Edition, 2017		Templates	

manageme nt plan to establish project deliverable s.		 Project documents from past similar projects Journa ls Histori col 			
		data and information			
To develop a schedule manageme nt plan as a guide to the project manager to complete the project within an established timeframe.	Schedule Manage ment Plan	 PMBO K Guide, 6th Edition, 2017 Project documents from past similar projects Journa ls Histori cal data and information 	Qualitative Quantitative Mixed	Expert Judgement Data Analysis Meetings Templates	Limited data since project is first of its kind in Guyana
To develop a cost manageme nt plan to incorporate all project expenditur es and the efficient allocation of finance.	Cost Manage ment Plan	 PMBO K Guide, 6th Edition, 2017 Project documents from past similar projects Journa ls Histori cal data and 	Qualitative Quantitative Mixed	Expert Judgement Data Analysis Meetings Templates	Limited data since project is first of its kind in Guyana

		information			
T. 1	01:4		01:4-4:	E I	T :: 4 - 1 1 - 4
10 develop	Quality	• PMBO	Quantative	Expert Judgement	Limited data since
a quality	Manage	K	Quantitative	Data Analysis	project is first of
manageme	ment	Guide, 6th	Mixed	Meetings	its kind in Guyana
nt plan to	Plan	Edition, 2017		Templates	
outline the		• Project			
acceptable		documents			
standards		from			
of the		nom nost similar			
project		past sillina			
project.		projects			
		• Journa			
		ls			
		Histori			
		cal			
		data			
		and			
		information			
To develop	Resource	• PMBO	Qualitative	Expert Judgement	Limited data since
a resource	Manage	K	Quantitative	Data Analysis	project is first of
manageme	ment	Guide 6th	Mixed	Meetings	its kind in Guvana
nt plan to	Dlon	Edition 2017	WIIXed	Tompletos	
	riali	Edition, 2017		Templates	
ensure the		• Project			
availability		documents			
of the		from			
adequate		past similar			
resources		projects			
throughout		 Journa 			
the project		ls			
duration.		Histori			
		cal			
		data			
		uata			
T. 1	C	Information	Oreliteting	E	T :: 4 . 1 . 1 . 4
10 develop	Commun	• PMBO	Qualitative	Expert Judgement	Limited data since
a .	ication	K	Quantitative	Data Analysis	project is first of
communica	Manage	Guide, 6th	Mixed	Meetings	its kind in Guyana
tion	ment	Edition, 2017		Templates	
manageme	Plan	 Project 			
nt plan to		documents			
establish		from			
the		past similar			
necessarv		projects			
strategies		P10)00 00			

which will be used throughout the project.		 Journa ls Histori cal data 			
		and information			
To develop a risk manageme nt plan to identify, evaluate and plan for possible risk throughout the project.	Risk Manage ment Plan	 PMBO K Guide, 6th Edition, 2017 Project documents from past similar projects Journa ls Histori cal data and information 	Qualitative Quantitative Mixed	Expert Judgement Data Analysis Meetings Templates	Limited data since project is first of its kind in Guyana
To develop a procureme nt manageme nt plan to identify the procureme nt requiremen ts that must be acquired for the project.	Procurem ent Manage ment Plan	 PMBO K Guide, 6th Edition, 2017 Project documents from past similar projects Journa ls Histori cal data and information 	Qualitative Quantitative Mixed	Expert Judgement Data Analysis Meetings Templates	Limited data since project is first of its kind in Guyana
To develop a stakeholder	Stakehol der	• PMBO K Guide, 6th	Qualitative Quantitative Mixed	Expert Judgement Data Analysis Meetings	Limited data since project is first of its kind in Guyana

engagemen	Manage	Edition, 2017	Templates	
t plan to	ment	• Project		
identify an	Plan	documents		
effectively		from		
engage		past similar		
stakeholder		projects		
s on project		 Journa 		
matters.		ls		
		• Histori		
		cal		
		data		
		and		
		information		

22. Validation of the work in the field of the regenerative and sustainable development.

The mitigating methane emissions plays a major part in meeting the Paris greenhouse gas (GHG) reduction goals (Getting It Right to Reduce Methane Emissions, n.d.). Due to the lifespan and warming effect of methane which makes it a climate forcer, methane emissions mitigation is an urgent and we must act now to reduce the effects of global warming. The mitigating methane emissions from our landfill operations is an opportunity to enhance the environmental lifespan. Hence, contributing to the improvement of regenerative and sustainable development.

While environmental health is the initial motivation of this Project. The net results are the significant reduction of the methane emissions through the country which directly contributes to global warming and climate change.

Key performance indicators will determine if this FGP has achieved its objective. The key performance objectives which will be used to measure this FGP are the reduce odor which indicates les LFG migration and the successful completion to the FGP with the guidance of the Project management plan which encompasses the 10-knowledge area outlined by PMI.

Appendix 2: FGP WBS

Appendix 3: FGP Schedule

ID	Task Name	Duration	Start	Finish	Predecessors	Qtr	1, 202	3		Qtr 2, 20	23	1	Qtr 3, 20	023	1
1	Project Management Plan for The Construction of A Gas Management	141 days	Thu 1/19/23	Thu 8/3/23		ec J	an	Feb	Mar	Apr	May	Jun	Jul	Aug	
2	Project Charter	14 days	Thu 1/19/23	Tue 2/7/23				h							
3	sustainable scope management plan	15 days	Wed 2/8/23	Tue 2/28/23	2			*	1						
4	schedule management	14 days	Wed 3/1/23	Mon 3/20/23	3				*]						
5	cost management	14 days	Tue 3/21/23	Fri 4/7/23	4				*	1					
6	quality management	14 days	Mon 4/10/23	Thu 4/27/23	5					-	1				
7	resource management plan	14 days	Fri 4/28/23	Wed 5/17/23	6					ì					
8	communication management	14 days	Thu 5/18/23	Tue 6/6/23	7						*				
9	risk management p	14 days	Wed 6/7/23	Mon 6/26/2	38							-	1		
10	procurement management	14 days	Tue 6/27/23	Fri 7/14/23	9							i			
11	stakeholder engagement plan	14 days	Mon 7/17/23	Thu 8/3/23	10								*		
	engagement plan	Trak	7/17/23	110 0/3/23											
		Task			Inactive Summary			_	Exter	nal Tasks					
		Split			manual rásk				Exter	nai Milėst	one	~			
Proje	ct: Project Management	t P Milesto	ne 🖣		Duration-only				Dead	line		-			
	: Mon 2/20/23	Summa	ry		Manual Summary Rollu	ip			Prog	ress					
Date		Project	summary I		Manual Summary				Manu	ai Progre	55				
Date						-									
Date		Inactive	Task		Start-only	C									

Appendix 4: Critical Path

These were the reference used based on my research to support the literature in this FGP

1. US EPA. (2019, April 9). Basic Information about Landfill Gas | US EPA. US EPA.

https://www.epa.gov/lmop/basic-information-about-landfill-gas

2. *Landfill Gas Management* | *Waste Management*. (n.d.). Austincommunitylandfill.wm.com.

Retrieved January 13, 2023, from https://austincommunitylandfill.wm.com/environmental-

protection/landfill-gas-management.jsp

3. *Landfill Management - an overview | ScienceDirect Topics*. (n.d.).

Www.sciencedirect.com. https://www.sciencedirect.com/topics/earth-and-planetary-

sciences/landfill-management

4. *ATSDR - Landfill Gas Primer - Chapter 5: Landfill Gas Control Measures*. (2019). Cdc.gov. https://www.atsdr.cdc.gov/HAC/landfill/html/ch5.html

5. *Problems & Solutions | Environmental Protection Department*. (n.d.). Www.epd.gov.hk. Retrieved January 13, 2023, from

 $https://www.epd.gov.hk/epd/english/environmentinhk/waste/prob_solutions/msw_gasmgntsystem. html$

6. *ATSDR - Landfill Gas Primer - Chapter 2: Landfill Gas Basics. (2019). Cdc.gov. https://www.atsdr.cdc.gov/HAC/landfill/html/ch2.html*

7. Landfill Gas Generation & Collection. (n.d.). Www.geoengineer.org.

https://www.geoengineer.org/education/web-class-projects/ce-176-environmental-

geotechnics/assignments/landfill-gas-generation-collection

8. Bruggers, J. (2021, July 13). Your Trash Is Emitting Methane In The Landfill. Here's Why

It Matters For The Climate. NPR.org. https://www.npr.org/2021/07/13/1012218119/epa-struggles-

to-track-methane-from-landfills-heres-why-it-matters-for-the-clima

9. *PMBOK? Guide's PM Areas - Produce a Infant Activity Gym.* (n.d.). Www.pmi.org.

https://www.pmi.org/learning/library/pmbok-guide-pm-knowledge-areas-6703

10. About Us | Ministry of Local Government and Regional Development. (n.d.). https://mlgrd.gov.gy/about-us/ 11. *Adaptive vs. Predictive: Is the end clear? – IDEA.* (n.d.). Www.idea.org.

https://www.idea.org/blog/2005/12/02/adaptive-vs-predictive-is-the-end-clear/

12. Project Management Institute. (2020). *What is Project Management?* Project Management Institute. https://www.pmi.org/about/learn-about-pmi/what-is-project-management

13. Usmani, F. (2021, September 2). *Assumptions and Constraints in Project Management – PM Study Circle*. PM Study Circle. https://pmstudycircle.com/assumptions-and-constraints-in-project-management/

14. Booth, D. (2018). *LibGuides: Research Methods: What are research methods?* Libguides.newcastle.edu.au.

https://libguides.newcastle.edu.au/researchmethods#:~:text=Research%20methods%20are%20the %20strategies

15. University of Minnesota. (2015, July 15). *Primary, Secondary, and Tertiary Sources*. University of Minnesota Crookston. https://crk.umn.edu/library/primary-secondary-and-tertiary-sources

16. *Sources of Information*. (2018, October 16). Library & Information Science Network. https://www.lisedunetwork.com/sources-of-information/

17. *Information Source*. (n.d.). TheFreeDictionary.com.

https://encyclopedia2.thefreedictionary.com/Information+Source

18. *OLCreate: HEAT_HMER_ET_1.0 Health Management, Ethics and Research Module:*

13. Writing Your Community Profile Report and Moving on to Small-Scale Research:

13.4.2 Research objectives. (2017). Open.edu.

https://www.open.edu/openlearncreate/mod/oucontent/view.php?id=231§ion=8.6.2

19. *Adaptive vs. Predictive: Is the end clear? – IDEA.* (n.d.). Www.idea.org.

https://www.idea.org/blog/2005/12/02/adaptive-vs-predictive-is-the-end-clear/ 20. Project Management Institute. (2020). *What is Project Management?* Project Management Institute. https://www.pmi.org/about/learn-about-pmi/what-is-project-management 21. Project Definition | Project Management Office. (n.d.). Pmo.uchicago.edu.

https://pmo.uchicago.edu/project-definition-and-initiation/

•

22. *Getting It Right to Reduce Methane Emissions*. (n.d.). IGU. Retrieved February 20, 2023, from https://www.igu.org/news/getting-it-right-to-reduce-methane-

emissions/?cmp_id=19700276830&adg_id=&kwd=&device=c&gclid=Cj0KCQiArsefBhCbARIsA P98hXSn5UNXLkAkLXmS5bn5lyd7kxcja4mRyFN_neWq28JApiWGkCsB5kcaAg0_EALw_wc B

Appendix 6: Philologist Review Report

June 20, 2024

Academic Advisor Master's Degree in Project Management University for International Cooperation (UCI) San Jose, Costa Rica

Dear Academic Advisor,

Re: Thorough Review and Proofreading of Final Graduation Project Submitted by Mr. Samuel Holder in Partial Fulfillment of the Requirements for the Master's in Project Management.

I hereby confirm that Mr. Samuel Holder has made all necessary corrections to the Final Graduation Project document: "PROJECT MANAGEMENT PLAN FOR LANDFILL GAS MANAGEMENT PROJECT AT HAAGS BOSCH SANITARY LANDFILL, GUYANAN, SOUTH AMERICA," as I have advised. In my opinion, the document meets the standards expected of a student at that academic level.

I hold an Associate's Degree from Cyril Potter College of Education, a Bachelor's Degree from the University of Guyana, and a Master's Degree from JAIN University of India. My comprehensive educational background and experience ensure that Samuel's proposal has been rigorously evaluated and meets the high standards required for academic excellence.

Sincerely,

Stephan Johnson: MA

Etuip